Usher syndrome

Source: Wikipedia, the free encyclopedia.
Usher syndrome
Other namesUsher–Hallgren syndrome
autosomal recessive pattern. The genes implicated in Usher syndrome are described below.
SpecialtyOphthalmology Edit this on Wikidata

Usher syndrome, also known as Hallgren syndrome, Usher–Hallgren syndrome, retinitis pigmentosa–dysacusis syndrome or dystrophia retinae dysacusis syndrome,[1] is a rare genetic disorder caused by a mutation in any one of at least 11 genes resulting in a combination of hearing loss and visual impairment. It is a major cause of deafblindness and is at present incurable.

Usher syndrome is classed into three subtypes (I, II and III) according to the genes responsible and the onset of deafness. All three subtypes are caused by mutations in genes involved in the function of the

autosomal recessive
pattern.

The occurrence of Usher syndrome varies across the world and across the different syndrome types, with rates as high as 1 in 12,500 in Germany

Acadian populations, and type III is rarely found outside Ashkenazi Jewish and Finnish[4] populations. Usher syndrome is named after Scottish ophthalmologist Charles Usher
, who examined the pathology and transmission of the syndrome in 1914.

Types

Usher syndrome I

People with Usher I are born profoundly deaf and begin to lose their vision in the first decade of life. They also exhibit balance difficulties and learn to walk slowly as children, due to problems in their vestibular system.[citation needed]

Usher syndrome type I can be caused by mutations in any one of several different genes:

retinal pigmented epithelium. Mutations that affect the normal function of these genes can result in retinitis pigmentosa and resultant vision loss.[citation needed
]

Worldwide, the estimated prevalence of Usher syndrome type I is 3 to 6 per 100,000 people in the general population. Type I has been found to be more common in people of

Acadian populations (Louisiana).[5] Among Acadians, research into haplotype data is consistent with one single mutation being responsible for all cases of Usher syndrome type I.[5]

Usher syndrome II

People with Usher II are not born deaf and are generally

hard-of-hearing rather than deaf, and their hearing does not degrade over time;[6] moreover, they do not seem to have noticeable problems with balance.[7] They also begin to lose their vision later (in the second decade of life) and may preserve some vision even into middle age.[citation needed
]

Usher syndrome type II may be caused by mutations in any of three different genes: USH2A, GPR98 and DFNB31. The protein encoded by the USH2A gene, usherin, is located in the supportive tissue in the inner ear and retina. Usherin is critical for the proper development and maintenance of these structures, which may help explain its role in hearing and vision loss. The location and function of the other two proteins are not yet known.[citation needed]

Usher syndrome type II occurs at least as frequently as type I, but because type II may be underdiagnosed or more difficult to detect, it could be up to three times as common as type I.[citation needed]

Usher syndrome III

People with Usher syndrome III are not born deaf but experience a progressive loss of hearing, and roughly half have balance difficulties.[citation needed]

Mutations in only one gene, CLRN1, have been linked to Usher syndrome type III. CLRN1 encodes clarin-1, a protein important for the development and maintenance of the inner ear and retina. However, the protein's function in these structures, and how its mutation causes hearing and vision loss, is still poorly understood.[citation needed]

The frequency of Usher syndrome type III is significant only in the

Birmingham, UK,[8] and individuals of Ashkenazi Jewish heritage. It has been noted rarely in a few other ethnic groups.[citation needed
]

Symptoms and signs

Usher syndrome is characterized by hearing loss and a gradual visual impairment. The hearing loss is caused by a defective inner ear, whereas the vision loss results from retinitis pigmentosa (RP), a degeneration of the retinal cells. Usually, the rod cells of the retina are affected first, leading to early night blindness (nyctalopia) and the gradual loss of peripheral vision. In other cases, early degeneration of the cone cells in the macula occurs, leading to a loss of central acuity. In some cases, the foveal vision is spared, leading to "doughnut vision"; central and peripheral vision are intact, but an annulus exists around the central region in which vision is impaired.[citation needed]

Cause

Table 1: Genes linked to Usher syndrome
  Type I   Type II   Type III
Type  Freq[9] Gene locus  Gene Protein  Function  Size (AA)  UniProt
OMIM
USH1B 39–55% 11q13.5 MYO7A Myosin VIIA Motor protein 2215 Q13402 276900
USH1C 6–7% 11p15.1-p14 USH1C Harmonin PDZ-domain protein 552 Q9Y6N9 276904
USH1D 19–35% 10q21-q22 CDH23 Cadherin 23 Cell adhesion 3354 Q9H251 601067
USH1E rare 21q21 ? ? ? ? ? 602097
USH1F 11–19% 10q11.2-q21 PCDH15 Protocadherin 15 Cell adhesion 1955 Q96QU1 602083
USH1G 7% 17q24-q25 USH1G SANS Scaffold protein 461 Q495M9 606943
USH2A 80% 1q41 USH2A Usherin Transmembrane linkage 5202 O75445 276901
USH2C 15% 5q14.3-q21.1 GPR98 VLGR1b Very large
GPCR
6307 Q8WXG9 605472
USH2D 5% 9q32-q34 DFNB31 Whirlin PDZ-domain protein 907 Q9P202 611383
USH3A 100% 3q21-q25 CLRN1 Clarin-1 Synaptic shaping 232 P58418 276902

Usher syndrome is inherited in an

linkage analysis of patient families (Table 1) and DNA sequencing of the identified loci.[10][11] A mutation in any one of these genes is likely to result in Usher syndrome.[citation needed
]

The clinical subtypes Usher I and II are associated with mutations in any one of six (

USH2B, were initially associated with Usher syndrome, but USH2B has not been verified and USH1A was incorrectly determined and does not exist.[12]
Research in this area is ongoing.

Using interaction analysis techniques, the identified gene products could be shown to interact with one another in one or more larger protein complexes. If one of the components is missing, this protein complex cannot fulfil its function in the living cell, and it probably comes to the degeneration the same. The function of this protein complex has been suggested to participate in the signal transduction or in the cell adhesion of sensory cells.[11]

A study shows that three proteins related to Usher syndrome genes (PCDH15, CDH23, GPR98) are also involved in auditory cortex development, in mouse and macaque. Their lack of expression induces a decrease in the number of parvalbumin interneurons. Patients with mutations for these genes could have consequently auditory cortex defects.[13]

Pathophysiology

The progressive blindness of Usher syndrome results from

ophthalmoscope in advanced stages of degeneration.[16]

The hearing impairment associated with Usher syndrome is caused by damaged hair cells in the cochlea of the inner ear inhibiting electrical impulses from reaching the brain. It is a form of dysacusis.

Diagnosis

Since Usher syndrome is incurable at present, it is helpful to diagnose children well before they develop the characteristic night blindness. Some preliminary studies have suggested as many as 10% of children with congenital severe to profound deafness may have Usher syndrome.[1] However, a misdiagnosis can have bad consequences.[citation needed]

The simplest approach to diagnosing Usher syndrome is to test for the characteristic chromosomal mutations. An alternative approach is electroretinography, although this is often disfavored for children, since its discomfort can also make the results unreliable.[1] Parental consanguinity is a significant factor in diagnosis. Usher syndrome I may be indicated if the child is profoundly deaf from birth and especially slow in walking.

Thirteen other syndromes may exhibit signs similar to Usher syndrome, including

Norrie syndrome, osteopetrosis (Albers–Schonberg disease), Refsum disease (phytanic acid storage disease) and Zellweger syndrome (cerebrohepatorenal syndrome).[citation needed
]

Classification

Although Usher syndrome has been classified clinically in several ways,[17][15][18] the prevailing approach is to classify it into three clinical sub-types called Usher I, II and III in order of decreasing severity of deafness.[14][16] Although it was previously believed that there was an Usher syndrome type IV, researchers at the University of Iowa recently[when?] confirmed that there is no USH type IV.[citation needed] As described below, these clinical subtypes may be further subdivided by the particular gene mutated; people with Usher I and II may have any one of six and three genes mutated, respectively, whereas only one gene has been associated with Usher III. The function of these genes is still poorly understood.[citation needed]

Usher syndrome is a variable condition; the degree of severity is not tightly linked to whether it is Usher I, II or III. For example, someone with type III may be unaffected in childhood but go on to develop a profound hearing loss and a very significant loss of sight by early-to-mid adulthood. Similarly, someone with type I, who is therefore profoundly deaf from birth, may keep good central vision until the sixth decade of life or even beyond. People with type II, who have useful hearing with a hearing aid, can experience a wide range of severity of the RP. Some may maintain good reading vision into their 60s, while others cannot see to read while still in their 40s.[citation needed]

Since Usher syndrome is inherited in an

autosomal recessive pattern, both males and females are equally likely to inherit it. Consanguinity
of the parents is a risk factor.

Treatment

Since Usher syndrome results from the loss of a gene, gene therapy that adds the proper protein back ("gene replacement") may alleviate it, provided the added protein becomes functional. Recent studies of mouse models have shown one form of the disease—that associated with a mutation in myosin VIIa—can be alleviated by replacing the mutant gene using a lentivirus.[19] However, some of the mutated genes associated with Usher syndrome encode very large proteins—most notably, the USH2A and GPR98 proteins, which have roughly 6000 amino-acid residues. Scientists have successfully treated mice with Usher syndrome type 1C, which has a relatively small affected gene.[20]

Epidemiology

Usher syndrome is responsible for the majority of deafblindness.[21] It occurs in roughly 1 in 23,000 people in the United States,[22] 1 in 28,000 in Norway,[3] and 1 in 12,500 in Germany.[2] People with Usher syndrome represent roughly one-sixth of people with retinitis pigmentosa.[16]

History

Usher syndrome is named after the Scottish ophthalmologist

transmission of this illness in 1914 on the basis of 69 cases.[23] However, it was first described in 1858 by Albrecht von Gräfe, a pioneer of modern ophthalmology.[24] He reported the case of a deaf patient with retinitis pigmentosa, who had two brothers with the same symptoms. Three years later, one of his students, Richard Liebreich, examined the population of Berlin for disease pattern of deafness with retinitis pigmentosa.[25] Liebreich noted Usher syndrome to be recessive, since the cases of blind-deafness combinations occurred particularly in the siblings of blood-related marriages or in families with patients in different generations. His observations supplied the first proofs for the coupled transmission of blindness and deafness, since no isolated cases of either could be found in the family trees.[citation needed
]

Animal models of this human disease (such as knockout mice and zebrafish) have been developed recently[when?] to study the effects of these gene mutations and to test potential cures for Usher syndrome.

Notable cases

  • Rebecca Alexander, a psychotherapist, author, and recipient of the Helen Keller Achievement Award.
  • Christine "Coco" Roschaert, director of the Nepal Deafblind Project, kick-off speaker for Deaf Awareness Week at the
    Gallaudet United Now Movement.[26]
  • Catherine Fischer wrote her autobiography of growing up with Usher syndrome in Louisiana, entitled Orchid of the Bayou.[27]
  • Vendon Wright has written two books describing his life with Usher syndrome, I was blind but now I can see[28] and Through my eyes.[29]
  • Christian Markovic, and blind-deaf illustrator and designer; Fuzzy Wuzzy Designs.[30]
  • John Tracy, the son of actor Spencer Tracy and namesake of the oralist John Tracy Clinic.
  • genetic penetrance argues that expression of the phenotype
    of Usher syndrome may be more complex than originally assumed.
  • The Israeli Nalaga'at (do touch) Deaf-blind Acting Ensemble consists of 11 deaf-blind actors, most of whom are diagnosed with Usher syndrome. The theater group has put on several productions and appeared both locally in Israel and abroad in London and Broadway.[32]
  • Katie Kelly, a gold medal-winning paralympian.
  • Teigan Van Roosmalen, paraolympian.
  • Cyril Axelrod, Catholic priest.
  • Robert Tarango, first deafblind person to star in a movie, in the role of Artie in the Oscar-nominated short film Feeling Through.

References

  1. ^
    PMID 11190026
    .
  2. ^ .
  3. ^ .
  4. ^ .
  5. ^ . Retrieved 29 June 2022.
  6. . Retrieved 4 March 2022.
  7. .
  8. .
  9. .
  10. S2CID 505750. Archived from the original
    (PDF) on 2019-05-03.
  11. ^
    PMID 16545802. Archived from the original
    (PDF) on 2019-05-03.
  12. .
  13. .
  14. ^ .
  15. ^ .
  16. ^ .
  17. ^ Hammerschlag V (1907). "Zur Kenntnis der hereditaer-degenerativen Taubstummen und ihre differential diagnostische Bedeutung". Z. Ohrenheilk. 54: 18–36.
    Bell J (1933). Retinitis Pigmentosa and Allied Diseases (2nd ed.). London: Cambridge University Press.
    Hallgren B (1959). "Retinitis pigmentosa combined with congenital deafness with vestibulo-cerebellar ataxia and mental abnormality in a proportion of cases: Clinical and geneto-statistical survey".
    S2CID 221393918
    .

    Merin S, Auerbach E (1976). "Retinitis pigmentosa". Surv. Ophthalmol. 20 (5): 303–345.
    .
    Davenport S, Omenn G (1977). The Heterogeneity of Usher Syndrome (volume 426 ed.). Amsterdam: Excerpta Medica Foundation.
    Gorlin R, Tilsner T, Feinstein S, Duvall AJ (1979). "Usher syndrome type III". Arch. Otolaryngol. 105 (6): 353–354.
    .
  18. .
  19. .
  20. ^ Dina Fine Maron (December 4, 2018). "Out of the Silence: Gene Therapy Tackles a Common Birth Defect: Deafness" (PDF). Scientific American. pp. 72–79.
  21. PMID 4897966
    .
  22. .
  23. ^ Usher C (1914). "On the inheritance of Retinitis pigmentosa with notes of cases". Roy. Lond. Ophthalmol. Hosp. Rep. 19: 130–236.
  24. ^ von Gräfe A (1858). "Exceptionelles Verhalten des Gesichtsfeldes bei Pigmententartung der Netzhaut". Archiv für Ophthalmologie. 4: 250–253.
  25. ^ Liebreich R (1861). "Abkunft aus Ehen unter Blutsverwandten als Grund von Retinitis pigmentosa". Dtsch. Klin. 13: 53.
  26. ^ "Tactile The World". Tactile The World.
  27. .
  28. .
  29. .
  30. ^ "Who's Fuzzy". Fuzzy Wuzzy Design. Archived from the original on 2021-06-29. Retrieved 2015-08-07.
  31. PMID 19020322
    .
  32. ^ "Nalagaat Center | Home". Archived from the original on 2010-11-24. Retrieved 2010-11-03.

Further reading

External links