Vaalbara
![]() A reconstruction of Vaalbara[citation needed] | |
Historical continent | |
---|---|
Formed | 3.6 Ga |
Type | Supercontinent |
Today part of |
|
Vaalbara is a hypothetical
Existence and lifespan
There has been some debate as to when and even if Vaalbara existed.
Cheney 1996, nevertheless, found a three-fold stratigraphic similarity and proposed that the two cratons once formed a continent which he named Vaalbara. This model is supported by the palaeomagnetic data of Zegers, de Wit & White 1998.[8] Reconstructions of the palaeolatitudes of the two cratons at 2.78–2.77 Ga are ambiguous however. In the reconstruction of Wingate 1998 they fail to overlap, but they do in more recent reconstructions, for example Strik et al. 2003.[9]
Other scientists dispute the existence of Vaalbara and explain similarities between the two cratons as the product of global processes. They point, for example, to thick volcanic deposits on other cratons such as
Zimgarn, another proposed supercraton composed of the
The Archaean–Palaeoproterozoic
The Kaapvaal craton is marked by dramatic events such as the intrusion of the Bushveld Complex (2.045 Ga) and the Vredefort impact event (2.025 Ga), and no traces of these events have been found in the Pilbara craton, clearly indicating that the two cratons were separated before 2.05 Ga.[17] Furthermore, geochronological and palaeomagnetic evidence show that the two cratons had a rotational 30° latitudinal separation in the time period of 2.78–2.77 Ga, which indicates they were no longer joined after c. 2.8 billion years ago.[18]
Vaalbara thus remained stable for 1–0.4 Ga and hence had a life span similar to that of later supercontinents such as Gondwana and Rodinia.[17] Some palaeomagnetic reconstructions suggest a Palaeoarchaean proto-Vaalbara is possible, although the existence of this 3.6–3.2 Ga continent cannot be proven.[19]
Evidence
South Africa's Kaapvaal craton and Western Australia's Pilbara craton have similar early
The high temperatures created by the impacts' forces fused sediments into small glassy spherules.
Remarkably similar lithostratigraphic and chronostratigraphic structural sequences between these two cratons have been noted for the period between 3.5 and 2.7 Ga.[25] Paleomagnetic data from two ultramafic complexes in the cratons showed that at 3.87 Ga the two cratons could have been part of the same supercontinent.[25] Both the Pilbara and Kaapvaal cratons show extensional faults which were active about 3.47 Ga during felsic volcanism and coeval with the impact layers.[25]
Origin of life
The Pilbara and Kaapvaal cratons contain well-preserved Archaean microfossils. Drilling has revealed traces of microbial life and photosynthesis from the Archaean in both Africa and Australia.[26] The oldest widely accepted evidence of photosynthesis by early life forms is
See also
- List of shields and cratons
- Continent
- Super continent
- Timeline of natural history
- History of the Earth
- Geological history of Earth
Notes
- ^ Zegers, de Wit & White 1998, Abstract
- ^ de Kock, Evans & Beukes 2009, pp. 145–154
- ^ Zegers, de Wit & White 1998, pp. 250–259
- ^ Button 1976b, pp. 114–120.
- ^ Smirnov et al. 2013, pp. 11–22
- ^ Button 1976a, pp. 262, 286.
- ^ de Kock, Evans & Beukes 2009, Introduction, pp. 145–146
- ^ Zhao et al. 2004, pp. 96–98
- ^ Strik et al. 2003, Implications for the Vaalbara Hypothesis, pp. 19–20, fig. 11
- ^ Nelson, Trendall & Altermann 1999, Independent development of the Pilbara and Kaapvaal cratons — implications, pp. 186–187
- ^ Smirnov et al. 2013, Abstract
- ^ Smirnov et al. 2013, pp. 11–22
- ^ Pisarevsky et al. 2003
- ^ Riedel et al. 2021
- ^ Marschall et al. 2010, Geology of the Grunehogna Craton, pp. 2278–2280
- ^ Marschall et al. 2010, Conclusions, p. 2298
- ^ a b Zegers, de Wit & White 1998, Discussion, pp. 255–257
- ^ Wingate 1998, Abstract
- ^ Biggin et al. 2011, p. 326
- ^ de Kock 2008, p. VII
- ^ Byerly et al. 2002, Abstract
- ^ Nitescu, Cruden & Bailey 2006, Fig. 1, p. 2
- ^ a b c Erickson 1993, p. 27
- ^ Lowe & Byerly 1986, p. 83
- ^ a b c Zegers & Ocampo 2003
- ^ Philippot et al. 2009, Abstract; Waldbauer et al. 2009, Conclusions, p. 45
- ^ Rasmussen et al. 2008, p. 1101
- ^ Parfrey et al. 2011, Discussion, p. 13626.
References
- Biggin, A. J.; de Wit, M. J.; Langereis, C. G.; Zegers, T. E.; Voûte, S.; Dekkers, M. J.; Drost, K. (2011). "Palaeomagnetism of Archaean rocks of the Onverwacht Group, Barberton Greenstone Belt (southern Africa): Evidence for a stable and potentially reversing geomagnetic field at ca. 3.5 Ga". Earth and Planetary Science Letters. 302 (3): 314–328. . Retrieved 12 September 2016.
- Button, A. (1976a). "Transvaal and Hamersley basins—review of basin development and mineral deposits" (PDF). Mineral Science Engineering. 8 (4): 262–293. OCLC 13791945. Retrieved 12 September 2016.
- Byerly, G. R.; Lowe, D. R.; Wooden, J. L.; Xie, X. (2002). "An Archean Impact Layer from the Pilbara and Kaapvaal Cratons". Science. 297 (5585): 1325–1327. S2CID 23112906. Retrieved 12 September 2016.
- Cheney, E. S. (1996). "Sequence stratigraphy and plate tectonic significance of the Transvaal succession of southern Africa and its equivalent in Western Australia". Precambrian Research. 79 (1–2): 3–24. .
- de Kock, M. O. (2008). Paleomagnetism of Selected Neoarchean-Paleoproterozoic Cover Sequences on the Kaapvaal Craton and Implications for Vaalbara (Ph.D.). University of Johannesburg. Retrieved 12 September 2016.
- de Kock, M. O.; Evans, D. A. D.; Beukes, N. J. (2009). "Validating the existence of Vaalbara in the Neoarchean". Precambrian Research. 174 (1): 145–154. . Retrieved 12 September 2016.
- Erickson, Jon (1993). Craters, Caverns and Canyons – Delving Beneath the Earth's Surface. Facts on File. ISBN 978-0-8160-2590-9.
- Lowe, D. R.; Byerly, G. R. (1986). "Early Archean silicate spherules of probable impact origin, South Africa and Western Australia". Geology. 14 (1): 83–86. .
- Marschall, H. R.; Hawkesworth, C. J.; Storey, C. D.; Dhuime, B.; Leat, P. T.; Meyer, H. P.; Tamm-Buckle, S. (2010). "The Annandagstoppane Granite, East Antarctica: evidence for Archaean intracrustal recycling in the Kaapvaal–Grunehogna Craton from zircon O and Hf isotopes" (PDF). Journal of Petrology. 51 (11): 2277–2301. . Retrieved 14 May 2016.
- Nelson, D. R.; Trendall, A. F.; Altermann, W. (1999). "Chronological correlations between the Pilbara and Kaapvaal cratons" (PDF). Precambrian Research. 97 (3): 165–189. . Retrieved 17 April 2016.
- Nitescu, B.; Cruden, A. R.; Bailey, R. C. (2006). "Crustal structure and implications for the tectonic evolution of the Archean Western Superior craton from forward and inverse gravity modeling". Tectonics. 25 (TC1009): n/a. .
- PMID 21810989.
- Philippot, P.; Van Kranendonk, M.; Van Zuilen, M.; Lepot, K.; Rividi, N.; Teitler, Y.; Thomazo, C.; Blanc-Valleron, M.-M.; Rouchy, J.-M.; Grosch, E.; de Wit, M. (2009). "Early traces of life investigations in drilling Archean hydrothermal and sedimentary rocks of the Pilbara Craton, Western Australia and Barberton greenstone belt, South Africa". Comptes Rendus Palevol. 8 (7): 649–663. . Retrieved 12 September 2016.
- Rasmussen, B.; Fletcher, I. R.; Brocks, J. J.; Kilburn, M. R. (2008). "Reassessing the first appearance of eukaryotes and cyanobacteria" (PDF). Nature. 455 (7216): 1101–1104. S2CID 4372071. Retrieved 24 April 2016.
- Rogers, J. J. (1993). "India and Ur". Geological Society of India. 42 (3): 217–222. Retrieved 17 March 2016.
- Rogers, J. J. W. (1996). "A history of continents in the past three billion years". Journal of Geology. 104 (1): 91–107, Chicago. S2CID 128776432.
- Smirnov, A. V.; Evans, D. A.; Ernst, R. E.; Söderlund, U.; Li, Z. X. (2013). "Trading partners: tectonic ancestry of southern Africa and western Australia, in Archean supercratons Vaalbara and Zimgarn" (PDF). Precambrian Research. 224: 11–22. . Retrieved 26 March 2016.
- Strik, G.; Blake, T. S.; Zegers, T. E.; White, S. H.; Langereis, C. G. (2003). "Palaeomagnetism of flood basalts in the Pilbara Craton, Western Australia: Late Archaean continental drift and the oldest known reversal of the geomagnetic field". Journal of Geophysical Research: Solid Earth. 108 (B12): 2551. . Retrieved 12 September 2016.
- Waldbauer, J. R.; Sherman, L. S.; Sumner, D. Y.; Summons, R. E. (2009). "Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis". Precambrian Research. 169 (1): 28–47. doi:10.1016/j.precamres.2008.10.011. Archived from the originalon June 4, 2016. Retrieved 24 April 2016.
- Wingate, M. T. D. (1998). "A palaeomagnetic test of the Kaapvaal-Pilbara (Vaalbara) connection at 2.78 Ga". South African Journal of Geology. 101 (4): 257–274. Retrieved 12 September 2016.
- Zegers, T. E.; de Wit, M. J.; White, S. H. (1998). "Vaalbara, Earth's oldest assembled continent? A combined. structural, geochronological, and palaeomagnetic test" (PDF). Terra Nova. 10 (5): 250–259. S2CID 52261989. Retrieved 17 April 2016.
- Zegers, T. E.; Ocampo, A. (2003). Vaalbara and Tectonic Effects of a Mega Impact in the Early Archean 3470 Ma. Third International Conference on Large Meteorite Impacts. Nordlingen, Germany. Retrieved 12 September 2016.
- Zhao, G.; Sun, M.; Wilde, S. A.; Li, S. (2004). "A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup". Earth-Science Reviews. 67 (1): 91–123. . Retrieved 12 September 2016.
- Button, A. (1976b). "Transvaal and Hamersley Basins—Review of Basin Development and Mineral Deposits". Mineral Science and Engineering. 8 (2): 114–120.
- Pisarevsky, S.A.; Wingate, M.T.D.; De Waele, B.; Harris, L.B.; Evans, D.A.D. (2003). "Palaeomagnetic constraints on the position of the Kalahari craton in Rodinia". Precambrian Research. 127 (1–2): 129–157. .
- Riedel, S.; Jacobs, J.; Weber, K.; Markl, G. (2021). "The genesis and age of the Grunehogna Granite and Rb–Sr and Sm–Nd isotopic systematics of the Annandagstoppane granite, western Dronning Maud Land, East Antarctica". Gondwana Research. 96: 132–152. .