Vakhsh (river)

Coordinates: 37°06′40″N 68°18′51″E / 37.1112°N 68.3141°E / 37.1112; 68.3141
Source: Wikipedia, the free encyclopedia.
(Redirected from
Vakhsh River
)
Vakhsh
The river Vakhsh (highlighted in blue)
Location
CountryKyrgyzstan, Tajikistan
Physical characteristics
MouthAmu Darya
 • coordinates
37°06′40″N 68°18′51″E / 37.1112°N 68.3141°E / 37.1112; 68.3141
Length786 km (488 mi)
Basin size39,100 km2 (15,100 sq mi)
Discharge 
 • average621 m3/s (21,900 cu ft/s)[1]
Basin features
ProgressionAmu DaryaAral Sea

The Vakhsh (

Central Asian river, and one of the main rivers of Tajikistan. It is a tributary of the Amu Darya river.[2]

Geography

The Vakhsh flows through the

Fedchenko and Abramov glaciers (the former being the longest glacier in the world outside of the polar regions), drain into the Vakhsh.[3] Its largest tributaries are the Muksu and the Obikhingou [de]; the Vakhsh proper begins at the confluence
of the Obikhingou and Surkhob rivers.

After it exits the Pamirs, the Vakhsh passes through the fertile lowlands of southwest Tajikistan.

USSR, is located at the confluence of the Vakhsh and the Panj.[4]

The catchment area of the Vakhsh is 39,100 km2, of which 31,200 km2 (79.8%) lies within Tajikistan. The river contributes about 25% of the total flow of the Amu Darya, its

glaciers, these flow rates have great seasonal variability between winter and summer. Measurements at the Nurek Dam indicate that winter flow rates average around 150 m3/s, whereas flow rates during the summer months can exceed 1500 m3/s – a tenfold increase.[3]

Muk-Suu
and Kyzyl-Suu

Economic development

Nurek Reservoir
The Vakhsh River forms a reservoir behind the Nurek dam
Nurek Reservoir is located in Tajikistan
Nurek Reservoir
Nurek Reservoir
Coordinates38°19′40″N 69°23′00″E / 38.32778°N 69.38333°E / 38.32778; 69.38333

The Vakhsh has been intensively developed for human use. Electricity, aluminum, and cotton are the mainstays of Tajikistan's economy,

Tajik Aluminum Company in Tursunzoda, a major source of Tajikistan's industrial output and export revenue.[5] As for cotton, Vakhsh water irrigates much of Tajikistan's crop; about 85% of the water taken from the Vakhsh goes toward irrigation.[7]

Soviet era

The leaders of the Soviet Union stressed the importance of developing the country's under-developed regions, such as the Tajik Soviet Socialist Republic (which was the predecessor to modern-day, independent Tajikistan). Not only did Vladimir Lenin’s ideology identify the decentralization of industry as a way to counter the colonial exploitation of indigenous peoples, but the USSR had strategic aims as well, especially in World War II when industry was evacuated eastward away from the German front.[8] This industrialization would be fueled by exploiting Tajikistan's enormous hydropower potential.

It took until the 1950s, however, for dam construction to begin on the Vakhsh. The Perepadnaya power station, was the first to be commissioned in 1959. It is situated on a canal off the Golovnaya Dam which was commissioned in 1963. The giant Nurek dam was constructed between 1961 and 1980. Baipaza Dam was completed in 1983.

To build transmission lines over the Pamirs would have been prohibitively expensive, so, in order to take advantage of the electricity produced by these dams, the Soviet Union built many industries nearby.[9] The Tajik Aluminum Company plant is a prime example. Other industries established locally were chemical plants, nitrogen fertilizer factories, and cotton gins.[10]

The dams, particularly the reservoirs behind them, were also built with the purpose of providing water for agriculture. The Soviet Union promoted cotton farming in the Vakhsh Valley, as well as vineyards and orchards, and drew water from the Vakhsh for irrigation. The Vakhsh Valley Canal Project, which expanded farmland along the river's lower reaches, predated the dams, having been completed in 1933. In the 1960s, after the reservoirs had been constructed, engineers dug tunnels through the surrounding mountains to irrigate other valleys.[11] Water storage in the reservoirs also helped control the river's flow, so as to provide a more reliable water supply for downstream users in Uzbekistan and Turkmenistan.[3]

After Tajik independence

Soviet Central Asia had a centrally planned economy in which the different republics supplied resources to each other at different times of the year. During the summer, when river flows were greatest, Tajikistan (located upstream) released water from its reservoirs on the Vakhsh and exported the hydroelectricity to power irrigation pumps downstream, in Uzbekistan and Turkmenistan, along the Amu Darya. In winter, Tajik dams accumulated water, and the fossil-fuel-rich downstream nations supplied Tajikistan with oil and gas to compensate for forgone hydroelectricity generation.

However, with increasing regional tension post-independence, this system is breaking down, with no conclusive cooperative arrangement yet. Fuel deliveries from downstream nations have been getting less reliable and more expensive, and impoverished Tajikistan cannot adapt by increasing winter hydroelectric generation since this would jeopardize irrigation and electricity exports in the summer. This dependence has caused energy crises in the winters of 2008 and 2009, in which the capital, Dushanbe, lost power and heating. Heightened nationalism and border disputes further complicate the search for a solution to Central Asia's water needs, according to a study conducted by the International Crisis Group.[12]

Tajikistan is therefore pursuing a course of action to increase hydroelectric capacity by building more dams on the Vakhsh, in order to promote economic growth and move towards energy independence.

Russian Aluminum Company
. If constructed to its full planned height, it will supersede the Nurek as tallest in the world.

This project has caused great controversy. Just as energy dependence threatens Tajikistan, so water dependence threatens the downstream nations. For this reason, Uzbekistan was highly critical of the Rogun Dam, claiming that it would “put it [Tajikistan] firmly in control of the river”.[3] The World Bank responded to these tensions by launching investigations into the social and environmental impacts of the dam.[13] However, following the death of its former leader Islam Karimov in 2016, in 2018 Uzbekistan dropped its opposition to the Rogun Dam. "Go ahead and build it, but we hold to certain guarantees in accordance with these conventions that have been signed by you," Uzbek Foreign Minister Abdulaziz Komilov said in a televised appearance on July 5, 2018.[14]

Environmental problems

Intensive agriculture in the Vakhsh basin has left the river polluted with fertilizers, pesticides, and salts. Also, chemicals have leached into groundwater from the heavy industries near the Vakhsh's dams, which has in turn contaminated surface water.

2008 financial crisis
has further increased poverty, which in turn has further decreased pollution.

Since the waters of the Vakhsh eventually flow into the Aral Sea, pollution in the Vakhsh contributes to eutrophication there.[7]

Climate change impacts

The Vakhsh is fed by the glaciers of the Pamirs, one of the world's most susceptible regions to climate change. Tajikistan as a whole has experienced a rise in temperatures from between 1.0-1.2 degrees Celsius between 1940 and 2000, and many glaciers that feed the Vakhsh have retreated, including the

Oxfam International, up to 30% of Tajikistan's glaciers could shrink or disappear completely by 2050. The reduction in river flow could lower the Vakhsh's hydropower production, and harm agriculture dependent on its waters for irrigation.[16] Furthermore, if climate change affects precipitation patterns, it could cause more floods, landslides, and other natural disasters in the river valley.[7]

Blockages

The Vakhsh is located in a seismically active region, and earthquakes, in addition to high groundwater levels (especially during the wet season), cause hundreds of landslides per year.[17] These landslides occasionally block the river and form landslide dams.

Such blockages pose a significant threat to the river's dams and hydroelectric power generation. A large landslide 8 kilometers (5 mi) downstream from the

Tajik Aluminum Company
, and cutting off supplies of drinking and irrigation water for downstream users. In the worst-case scenario, failure of a landslide dam could cause catastrophic floods.

Recognizing these threats, the Asian Development Bank responded to the landslide of 2002 by granting the government of Tajikistan a low-interest loan to stabilize the valley slopes and mitigate the potential for blockages in the future.[18]

Notes

  1. ^ "Vakhsh at Golovnaya Hyd'Elec'Power". Soviet Union Hydro-Station archive. UNESCO. 1936–1985. Retrieved 2014-02-01.
  2. ^ a b c "Tajikistan - Topography and Drainage" in Tajikistan: a Country Study (Washington: Library of Congress, 1996)
  3. ^ a b c d e Kai Wegerich, Oliver Olsson, and Jochen Forebrich, “Reliving the past in a changed environment: Hydropower ambitions, opportunities and constraints in Tajikistan”, Energy Policy 35 (2007), 3815-3825
  4. ^ Mary Pat Silviera et al., Environmental Performance Reviews: Tajikistan. (New York and Geneva: United Nations, 2004), 124
  5. ^ a b Silviera et al., Environmental Performance Reviews, 4
  6. ^ “VIII. Regional and Country Hydropower Profiles: CIS,” in Hydropower Report: Large & Small Hydropower Archived 2011-09-03 at the Wayback Machine (London: ABS Energy Research, 2005), 59-62.
  7. ^ a b c d e Silviera et al., Environmental Performance Reviews, 104-109
  8. ^ Violet Conolly, Beyond the Urals: Economic Developments in Soviet Asia (London: Oxford University Press, 1967), pp. 61-62
  9. ^ Conolly, Beyond the Urals, pp. 145-149
  10. ^ Conolly, Beyond the Urals, p. 172
  11. ^ Conolly, Beyond the Urals, pp. 208-220
  12. ^ International Crisis Group. "Water Pressures in Central Asia", CrisisGroup.org. 11 September 2014. Retrieved 6 October 2014.
  13. ^ a b Murodbek Laldjebaev, “The Water-Energy Puzzle in Central Asia: The Tajikistan Perspective,” Water Resources Development 26 (2010): 23-34.
  14. ^ Uzbekistan and Tajikistan: No more dam problems?
  15. ^ Silviera et al., Environmental Performance Reviews, 165
  16. Oxfam International
    , 2009), 1-22
  17. ^ Silviera et al., Environmental Performance Reviews, 17
  18. ^ Report and Recommendation of the President to the Board of Directors on a Proposed Loan to the Republic of Tajikistan for the Baipaza Landslide Stabilization Project (Manila: Asian Development Bank, 2003).

External links