Vector (molecular biology)

Source: Wikipedia, the free encyclopedia.

In

viral vectors, cosmids, and artificial chromosomes. Of these, the most commonly used vectors are plasmids.[2] Common to all engineered vectors are an origin of replication, a multicloning site, and a selectable marker
.

The vector itself generally carries a

promoter
sequence that drives expression of the transgene. Simpler vectors called transcription vectors are only capable of being transcribed but not translated: they can be replicated in a target cell but not expressed, unlike expression vectors. Transcription vectors are used to amplify their insert.

The manipulation of DNA is normally conducted on E. coli vectors, which contain elements necessary for their maintenance in E. coli. However, vectors may also have elements that allow them to be maintained in another organism such as yeast, plant or mammalian cells, and these vectors are called shuttle vectors. Such vectors have bacterial or viral elements which may be transferred to the non-bacterial host organism, however other vectors termed intragenic vectors have also been developed to avoid the transfer of any genetic material from an alien species.[3]

Insertion of a vector into the target cell is usually called

eukaryotic cells,[5] although insertion of a viral vector is often called transduction.[6]

Characteristics

Plasmids

Plasmids are double-stranded extra chromosomal and generally circular DNA sequences that are capable of replication using the host cell's replication machinery.[7] Plasmid vectors minimalistically consist of an origin of replication that allows for semi-independent replication of the plasmid in the host. Plasmids are found widely in many bacteria, for example in Escherichia coli, but may also be found in a few eukaryotes, for example in yeast such as Saccharomyces cerevisiae.[8] Bacterial plasmids may be conjugative/transmissible and non-conjugative:

  • conjugative - mediate DNA transfer through conjugation and therefore spread rapidly among the bacterial cells of a population; e.g., F plasmid, many R and some col plasmids.
  • nonconjugative - do not mediate DNA through conjugation, e.g., many R and col plasmids.
The pBR322 plasmid is one of the first plasmids widely used as a cloning vector.

Plasmids with specially-constructed features are commonly used in laboratory for

ribosome binding site, start and stop codons
.

Viral vectors

retroviral integration
pattern after insertion that is detectable and indicates that the viral vector has incorporated into the host genome.

Artificial chromosomes

Artificial chromosomes are manufactured chromosomes in the context of yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), or human artificial chromosomes (HACs). An artificial chromosome can carry a much larger DNA fragment than other vectors.[9] YACs and BACs can carry a DNA fragment up to 300,000 nucleotides long. Three structural necessities of an artificial chromosome include an origin of replication, a centromere, and telomeric end sequences.[10]

Transcription

operator
used.

Viral promoters are often used for constitutive expression in plasmids and in viral vectors because they normally force constant transcription in many cell lines and types reliably.[13] Inducible expression depends on promoters that respond to the induction conditions: for example, the murine mammary tumor virus promoter only initiates transcription after dexamethasone application and the Drosophila heat shock promoter only initiates after high temperatures.

Some vectors are designed for transcription only, for example for in vitro mRNA production. These vectors are called transcription vectors. They may lack the sequences necessary for polyadenylation and termination, therefore may not be used for protein production.

Expression

ribosomal binding site
for translation initiation, and termination signals.

Prokaryotes expression vector

  • Promoter - commonly used inducible promoters are promoters derived from lac operon and the T7 promoter. Other strong promoters used include Trp promoter and Tac-Promoter, which are a hybrid of both the Trp and Lac Operon promoters.
  • Ribosome binding site
    (RBS) - follows the promoter, and promotes efficient translation of the protein of interest.
  • Translation initiation site -
    Shine-Dalgarno sequence
    enclosed in the RBS, 8 base-pairs upstream of the AUG start codon.

Eukaryotes expression vector

Eukaryote expression vectors require sequences that encode for:

  • Polyadenylation tail: Creates a polyadenylation tail at the end of the transcribed pre-mRNA that protects the mRNA from exonucleases and ensures transcriptional and translational termination: stabilizes mRNA production.
  • Minimal UTR length: UTRs contain specific characteristics that may impede transcription or translation, and thus the shortest UTRs or none at all are encoded for in optimal expression vectors.
  • Kozak sequence: Vectors should encode for a Kozak sequence in the mRNA, which assembles the ribosome for translation of the mRNA.

Features

Modern artificially-constructed vectors contain essential components found in all vectors, and may contain other additional features found only in some vectors:

See also

References

  1. ^ "Vector". Genome.gov. Archived from the original on 2019-07-08. Retrieved 2022-04-16.
  2. ^ Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000). "DNA Cloning with Plasmid Vectors". Molecular Cell Biology (4th ed.). New York: W. H. Freeman. Archived from the original on 2009-05-27. Retrieved 2018-04-11.
  3. .
  4. .
  5. ^ "MeSH Browser". meshb.nlm.nih.gov. Archived from the original on 2018-04-17. Retrieved 2018-04-16.
  6. OCLC 45730915
    .
  7. .
  8. from the original on 2022-12-17. Retrieved 2016-11-07.
  9. .
  10. .
  11. .
  12. .
  13. .

Further reading

External links