Volume expander

Source: Wikipedia, the free encyclopedia.

A volume expander is a type of intravenous therapy that has the function of providing volume for the circulatory system. It may be used for fluid replacement or during surgery to prevent nausea and vomiting after surgery.[1]

Physiology

When blood is lost, the greatest immediate need is to stop further blood loss. The second greatest need is replacing the lost volume. This way remaining red blood cells can still oxygenate body tissue. Normal human blood has a significant excess oxygen transport capability, only used in cases of great physical exertion. Provided blood volume is maintained by volume expanders, a rested patient can safely tolerate very low hemoglobin levels, less than 1/3 that of a healthy person.

The body detects the lower hemoglobin level, and compensatory mechanisms start up. The heart pumps more blood with each beat. Since the lost blood was replaced with a suitable fluid, the now diluted blood flows more easily, even in the small vessels. As a result of chemical changes, more oxygen is released to the tissues. These adaptations are so effective that if only half of the red blood cells remain, oxygen delivery may still be about 75 percent of normal. A patient at rest uses only 25 percent of the oxygen available in their blood. In extreme cases, patients have survived with a hemoglobin level of 2 g/dl, about 1/7 the normal, although levels this low are very dangerous.

With enough blood loss, ultimately red blood cell levels drop too low for adequate tissue oxygenation, even if volume expanders maintain circulatory volume. In these situations, the only alternatives are blood transfusions, packed red blood cells, or

hyperbaric oxygen therapy
can maintain adequate tissue oxygenation even if red blood cell levels are below normal life-sustaining levels.

Types

There are two main types of volume expanders: crystalloids and colloids. Crystalloids are aqueous solutions of mineral salts or other water-soluble molecules. Colloids contain larger insoluble molecules, such as gelatin; blood itself is a colloid. There is no evidence that colloids are better than crystalloids in those who have had trauma, burns, or surgery. Colloids are more expensive than crystalloids. As such, colloids are not recommended for volume expansion in these settings.[2]

Crystalloids

The most commonly used crystalloid fluid is normal

Ringer's lactate or Ringer's acetate is another isotonic solution often used for large-volume fluid replacement. The choice of fluids may also depend on the chemical properties of the medications being given.[citation needed
]

Normal saline

Normal saline (NS) is the commonly used term for a solution of 0.9%

intravenous drips (IVs) for patients who cannot take fluids orally and have developed or are in danger of developing dehydration or hypovolemia. NS is typically the first fluid used when hypovolemia is severe enough to threaten the adequacy of blood circulation, and has long been believed to be the safest fluid to give quickly in large volumes. However, it is now known that rapid infusion of NS can cause metabolic acidosis.[5]

Ringer's solution

Hartmann's Solution, the ionic concentrations of which differ slightly.[citation needed] Ringer's lactate contains calcium, which may combine with citrate (that is used as a preservative in some blood products) and form a precipitate; therefore, it is not to be used as a diluent in blood transfusions.[6]

1/3 NS 2/3D5

2/3 1/3 is no longer recommended as a maintenance intravenous fluid in children as it is hypotonic and isotonic fluids are preferred.[7]

Glucose (dextrose)

Intravenous sugar solutions, such as those containing glucose (also called dextrose), have the advantage of providing some energy, and may thereby provide the entire or part of the energy component of parenteral nutrition.

Types of glucose/dextrose include:

  • D5W (5% dextrose in water), which consists of 278 mmol/L dextrose
  • D5NS (5% dextrose in normal saline), which, in addition, contains normal saline.

Plasma-lyte

Plasma-Lyte A[8] and Plasma-Lyte 148[9] are buffered crystalloid solutions[8][10] that may be infused intravenously,[9] or used in conjunction with blood products.[8]

Comparison table

Composition of common crystalloid solutions
Solution Other Name [Na+](mmol/L) [Cl](mmol/L) [Glucose](mmol/L) [Glucose](mg/dl)
D5W 5% Dextrose 0 0 278 5000
2/3 D5W & 1/3 NS 3.3% Dextrose / 0.3% saline 51 51 185 3333
Half-normal saline
0.45% NaCl 77 77 0 0
Normal saline
0.9% NaCl 154 154 0 0
Ringer's lactate
Lactated Ringer 130 109 0 0
D5NS 5% Dextrose, Normal Saline 154 154 278 5000
Effect of adding one litre
Solution Change in ECF Change in
ICF
D5W 333 mL 667 mL
2/3 D5W & 1/3 NS 556 mL 444 mL
Half-normal saline 667 mL 333 mL
Normal saline
1000 mL 0 mL
Ringer's lactate 900 mL 100 mL

Colloids

Colloids preserve a high

intracellular volume. However, there is no evidence to support that this results in less mortality than crystalloids.[11] Another difference is that crystalloids generally are much cheaper than colloids.[11] Common colloids used in the medical context include albumin and fresh frozen plasma.[citation needed
]

Hydroxyethyl starch

Hydroxyethyl starch (HES/HAES, common trade names: Hespan, Voluven) is controversial. Its use in those who are very ill is associated with an increased risk of death and kidney problems. Therefore, HES/HAES is not recommended in people with known inflammatory conditions such as renal impairment.[2][12]

Gelofusine

Gelofusine is a colloid volume expander which may be used as a

hemorrhagia, trauma, dehydration, or a similar event. It is an intravenous colloid that behaves much like blood filled with albumins. As a result, it causes an increase in blood volume, blood flow, cardiac output, and oxygen transportation.[citation needed
]

References

  1. .
  2. ^ .
  3. ^ "Choosing between colloids and crystalloids for IV infusion". Nursing Times. 20 November 2017. Retrieved 31 August 2018.
  4. molarity
    ) NaCl assuming complete dissociation. Physiological dissociation is approximately 1.7 ions per mole, so one normal of NaCl is 1/1.7 = 0.588 molar. This is roughly 4 times more concentrated than medical "normal saline" of 0.154 molar.
  5. from the original on 6 May 2020.
  6. .
  7. .
  8. ^ .
  9. ^ a b ""Baxter PLASMA-LYTE 148 Injection (Multiple Electrolytes Injection, Type 1, USP)" (PDF). accessdata.fda.gov.
  10. PMID 27896148
    .
  11. ^ a b c Gregory S. Martin (2005-04-19). "An Update on Intravenous Fluids". Medscape.
  12. PMID 23423413
    .