Wastewater-based epidemiology

Source: Wikipedia, the free encyclopedia.

Wastewater-based epidemiology (or wastewater-based surveillance or sewage chemical-information mining) analyzes

analytical chemists and epidemiologists
.

History

Wastewater-based epidemiology (WBE) can be applied in the field of research that uses the analysis of sewage and wastewater to monitor the presence, distribution, and prevalence of a disease or chemicals in communities. The technique has been used for several decades, and an example of its early application is in the 1940s when WBE was applied for the detection and distribution of poliovirus in the sewage of New York, Chicago, and other cities.[4] Another early application came in 1954, in a study of schistosome of snails.[5] Wastewater-based epidemiology thereafter spread to multiple countries. By the turn of the 21st century, numerous studies had adopted the technique.[6] A 2005 study measured cocaine and its metabolite benzoylecgonine in water samples from the River Po in Italy.[7]

Wastewater-based epidemiology is supported by government bodies such as the European Monitoring Centre for Drugs and Drug Addiction in Europe.[8] Similar counterparts in other countries, such as the Australian Criminal Intelligence Commission in Australia[9] and authorities in China[10] use wastewater-based epidemiology to monitor drug use in their populations.

As of 2022, WBE had reached 3,000 sites in 58 countries.[11]

A group of Chinese scientists published the first WBE study on SARS-CoV-2 in 2020. They assessed whether the virus was present in fecal samples among 74 patients hospitalized for COVID-19 between January 16 and March 15, 2020, at a Chinese hospital. The first US SARS-CoV-2 study came from Boston. It reported a far higher rate of infection than had been estimated from individual PCR testing. It also served as a warning system, alerting the public to outbreaks (and outbreak ends) before positive test rates changed. However, considerable variability has been found within populations, based on symptom profiles, which may compromise measurement accuracy as the pathogen evolves.[12]

Technique

Wastewater-based epidemiology is analogous to

liquid chromatography-mass spectrometry) are used to quantify compounds of interest. These results can be expressed in per capita loads based on the volume of wastewater.[14]
Per capita daily consumption of a chemical of interest (e.g. a drug) is determined as

where R is the concentration of a residue in a wastewater sample, F is the volume of wastewater that the sample represents, C is a correction factor which reflects the average mass and molar excretion fraction of a parent drug or a metabolite, and P is the number of people in a wastewater catchment. Variations or modifications may be made to C to account for other factors such as the degradation of a chemical during its transport in the sewer system.[2]

Applications

Commonly detected chemicals include, but are not limited to the following;[13][2]

Temporal comparisons

By analyzing samples taken across different time points, day-to-day or longer-term trends can be assessed. This approach has illustrated trends such as increased consumption of alcohol and recreational drugs on weekends compared to weekdays.[13] A temporal wastewater-based epidemiology study in Washington measured wastewater samples in Washington before, during and after cannabis legalisation. By comparing cannabis consumption in wastewater with sales of cannabis through legal outlets, the study showed that the opening of legal outlets led to a decrease in the market share of the illegal market.[15]

Spatial comparisons

Differences in chemical consumption amongst different locations can be established when comparable methods are used to analyse wastewater samples from different locations. The European Monitoring Centre for Drugs and Drug Addiction conducts regular multi-city tests in Europe to estimate the consumption of illegal drugs. Data from these monitoring efforts are used alongside more traditional monitoring methods to understand geographical changes in drug consumption trends.[8]

Microbial surveillance

Virus surveillance

Sewage can also be tested for signatures of

WHO, especially in situations where mainstream surveillance methods are lacking, or where viral circulation or introduction is suspected.[19] Wastewater-based epidemiology of viruses has the potential to inform on the presence of viral outbreaks when or where it is not suspected. A 2013 study of archived wastewater samples from the Netherlands found viral RNA of Aichivirus A in Dutch sewage samples dating back to 1987, two years prior to the first identification of Aichivirus A in Japan.[20]
During the
UAE,[23] China, Singapore, the Netherlands,[24] Spain,[25] Austria,[22] Germany[26] and the United States.[27] In addition to surveillance of human wastewater, studies have also been conducted on livestock wastewater.[28] A 2011 article reported findings of 11.8% of collected human wastewater samples and 8.6% of swine wastewater samples as positive of the pathogen Clostridiodes Difficile.[29]

Applications against major outbreaks

As of August 2020, the WHO recognizes wastewater surveillance of SARS-CoV-2 as a potentially useful source of information on the prevalence and temporal trends of COVID-19 in communities, while highlighting that gaps in research such as viral shedding characteristics should be addressed.[30] Such aggregative testing may have detected early cases.[31] Studies show that wastewater-based epidemiology has the potential for an early warning system and monitoring for COVID-19 infections.[32][33][34][35][36] This may prove particularly useful once large shares of regional populations are vaccinated or recovered and do not need to conduct rapid tests while in some cases being infectious nevertheless.[37]
Rough workflow of detection of monkeypox virus DNA in wastewater samples in the Netherlands[38]

2022 monkeypox outbreak.[39][40][38]

It is unclear how cost-effective wastewater surveillance is, but national coordination and standardized methods could be useful.[41] Less common infections may be difficult to detect, including, such as those that cause hepatitis or foodborne illness.[42] A warning of increased cases from wastewater surveillance can "provide health departments with critical lead time for making decisions about resource allocation and preventive measures" and "unlike testing of individual people, wastewater testing provides insights into the entire population within a catchment area".[43]

A 2023 report by the

National Academies of Sciences, Engineering and Medicine called for moving from the grass roots system that "sprung up in an ad hoc way, fueled by volunteerism and emergency pandemic-related funding" to a more standardized national system and suggested such a system "should be able to track a variety of potential threats, which could include future coronavirus variants, flu viruses, antibiotic resistant bacteria and entirely new pathogens".[44]

Antimicrobial resistance

The global 'resistome' based on sewage-based monitoring[45]
Gene-sharing network between bacterial genera[45]

In 2022, genomic epidemiologists reported results from a global survey of antimicrobial resistance (AMR) via genomic wastewater-based epidemiology, finding large regional variations, providing maps, and suggesting resistance genes are also passed on between microbial species that are not closely related.[46][45] A 2023 review on wastewater-based epidemiology opined the necessity of surveillance wastewater from farms with livestock, wet markets and surrounding areas given the greater risk of pathogen spillover to humans.[47]

See also

References

  1. PMID 32283358
    .
  2. ^ .
  3. ^ .
  4. .
  5. .
  6. .
  7. .
  8. ^ a b "Wastewater analysis and drugs: a European multi-city study" (PDF). European Monitoring Centre for Drugs and Drug Addiction. 12 March 2020. Archived from the original (PDF) on 17 November 2020. Retrieved 31 August 2020.
  9. ^ "National Wastewater Drug Monitoring Program reports". Australian Criminal Intelligence Commission. 30 June 2020. Archived from the original on 20 September 2020. Retrieved 2 July 2020.
  10. S2CID 51677467
    .
  11. ^ "ArcGIS Dashboards: Summary of Global SARS-CoV-2 Wastewater Monitoring Efforts by UC Merced Researchers". www.arcgis.com. Retrieved 2022-02-09.
  12. ^ Jetelina, Katelyn (2022-02-09). "Wastewater: Taking surveillance to the next level". Your Local Epidemiologist. Retrieved 2022-02-09.
  13. ^
    ISBN 978-92-9168-856-2. Archived from the original (PDF) on 2020-11-06. Retrieved 2020-08-31. {{cite book}}: |website= ignored (help
    )
  14. .
  15. .
  16. .
  17. .
  18. .
  19. WHO
    . 2003.
  20. .
  21. ^ "Status of environmental surveillance for SARS-CoV-2 virus" (PDF). World Health Organisation. 5 August 2020. Retrieved 6 August 2020.
  22. ^
    S2CID 250642091
    .
  23. .
  24. ^ "Sewage research". National Institute for Public Health and the Environment. 8 August 2020. Retrieved 15 August 2020.
  25. PMID 33989864
    .
  26. .
  27. ^ "The University of Arizona says it caught a dorm's covid-19 outbreak before it started. Its secret weapon: Poop". The Washington Post. 28 August 2020.
  28. ISSN 0944-1344
    .
  29. .
  30. .
  31. ^ "Coronavirus traces found in March 2019 sewage sample, Spanish study shows". Reuters. 26 June 2020. Retrieved 28 July 2021.
  32. S2CID 234360319
    .
  33. .
  34. .
  35. .
  36. .
  37. ^ Seeger C. "Abwasserbasierte EpidemiologieAbwassermonitoring als Frühwarnsystem für Pandemien" (PDF). Retrieved 28 July 2021.
  38. ^
    PMID 36057309
    .
  39. ^ "Wastewater surveillance becomes more targeted in search for poliovirus, monkeypox and coronavirus". CBS News. Retrieved 18 September 2022.
  40. ^ Payne, Aaron; Kreidler, Mark (8 August 2022). "COVID sewage surveillance labs join the hunt for monkeypox". WOUB Public Media. Retrieved 18 September 2022.
  41. ^ McPhillips, Deidre (18 May 2022). "Covid-19 wastewater surveillance is promising tool, but critical challenges remain". CNN. Retrieved 2 February 2023.
  42. ^ Reardon, Sara. "Wastewater Monitoring Offers Powerful Tool for Tracking COVID and Other Diseases". Scientific American. Retrieved 2 February 2023.
  43. S2CID 252160339
    .
  44. ^ Anthes, Emily (20 January 2023). "A New Report Outlines a Vision for National Wastewater Surveillance". The New York Times. Retrieved 2 February 2023.
  45. ^
    PMID 36456547
    .
  46. ^ "Antibiotika-Resistenzen verbreiten sich offenbar anders als gedacht". Deutschlandfunk Nova (in German). Retrieved 17 January 2023.
  47. ISSN 2731-6084
    .