Weather satellite

Source: Wikipedia, the free encyclopedia.

GOES-16, a United States weather satellite of the meteorological-satellite service

A weather satellite or meteorological satellite is a type of

geostationary (hovering over the same spot on the equator).[1]

While primarily used to detect the development and movement of storm systems and other cloud patterns,

fires in the western United States such as Colorado and Utah
have also been monitored.

ozone hole
is mapped from weather satellite data. Collectively, weather satellites flown by the U.S., Europe, India, China, Russia, and Japan provide nearly continuous observations for a global weather watch.

History

The first television image of Earth from space from the TIROS-1 weather satellite in 1960
A mosaic of photographs of the United States from the ESSA-9 weather satellite, taken on June 26, 1969

As early as 1946, the idea of cameras in orbit to observe the weather was being developed. This was due to sparse data observation coverage and the expense of using cloud cameras on rockets. By 1958, the early prototypes for TIROS and Vanguard (developed by the Army Signal Corps) were created.[3] The first weather satellite, Vanguard 2, was launched on February 17, 1959.[4] It was designed to measure cloud cover and resistance, but a poor axis of rotation and its elliptical orbit kept it from collecting a notable amount of useful data. The Explorer VI and VII satellites also contained weather-related experiments.[3]

The first weather satellite to be considered a success was TIROS-1, launched by NASA on April 1, 1960.[5] TIROS operated for 78 days and proved to be much more successful than Vanguard 2. TIROS paved the way for the Nimbus program, whose technology and findings are the heritage of most of the Earth-observing satellites NASA and NOAA have launched since then. Beginning with the Nimbus 3 satellite in 1969, temperature information through the tropospheric column began to be retrieved by satellites from the eastern Atlantic and most of the Pacific Ocean, which led to significant improvements to weather forecasts.[6]

The ESSA and NOAA polar orbiting satellites followed suit from the late 1960s onward. Geostationary satellites followed, beginning with the

QuikScat and TRMM began to relay wind information near the ocean's surface starting in the late 1970s, with microwave imagery which resembled radar displays, which significantly improved the diagnoses of tropical cyclone
strength, intensification, and location during the 2000s and 2010s.

The

DSCOVR satellite, owned by NOAA, was launched in 2015 and became the first deep space satellite that can observe and predict space weather. It can detect potentially dangerous weather such as solar wind and geomagnetic storms. This is what has given humanity the capability to make accurate and preemptive space weather forecasts since the late 2010s.[7]

In Europe, the first

European Organisation for the Exploitation of Meteorological Satellites
(EUMETSAT).

The

ARGOS
Data Collection Platform (DCP) missions. SEVIRI provided an increased number of spectral channels over MVIRI and imaged the full-Earth disc at double the rate. Meteosat-9 was launched to complement Meteosat-8 in 2005, with the second pair consisting of Meteosat-10 and Meteosat-11 launched in 2012 and 2015, respectively.

The

mission to monitor air quality, trace gases and aerosols over Europe hourly at high spatial resolution. Two MTG satellites - one Imager and one Sounder - will operate in close proximity from the 0-deg geostationary location over western Africa to observe the eastern Atlantic Ocean, Europe, Africa and the Middle East, while a second imager satellite will operate from 9.5-deg East to perform a Rapid Scanning mission over Europe. MTG continues Meteosat support to the ARGOS and Search and Rescue missions. MTG-I1 launched in one of the last Ariane-5 launches, with the subsequent satellites planned to launch in Ariane-6 when it enters service.

In 2006, the first European low-Earth orbit operational meteorological satellite,

Metop-A was launched into a Sun-synchronous orbit at 817 km altitude by a Soyuz launcher from Baikonur, Kazakhstan. This operational satellite - which forms the space segment of the Eumetsat Polar System (EPS) - built on the heritage from ESA's ERS and Envisat experimental missions, and was followed at six-year intervals by Metop-B and Metop-C - the latter launched from French Guyana in a "Europeanised" Soyuz. Each carry thirteen different passive and active instruments ranging in design from imagers and sounders to a scatterometer and a radio-occultation instrument. The satellite service module is based on the SPOT-5
bus, while the payload suite is a combination of new and heritage instruments from both Europe and the US under the Initial Joint Polar System agreement between EUMETSAT and NOAA.

A second generation of Metop satellites (Metop-SG) is in advanced development with launch of the first satellite foreseen in 2025. As with MTG, Metop-SG will launch on Ariane-6 and comprise two satellite models to be operated in pairs in replacement of the single first generation satellites to continue the EPS mission.

Observation

meteorological-satellite service
, however, see more than clouds and cloud systems

Observation is typically made via different 'channels' of the electromagnetic spectrum, in particular, the visible and infrared portions.

Some of these channels include:[8][9]

  • Visible and Near Infrared: 0.6–1.6 μm – for recording cloud cover during the day
  • Infrared: 3.9–7.3 μm (water vapor), 8.7–13.4 μm (thermal imaging)

Visible spectrum

Visible-light images from weather satellites during local daylight hours are easy to interpret even by the average person, clouds, cloud systems such as fronts and tropical storms, lakes, forests, mountains, snow ice, fires, and pollution such as smoke, smog, dust and haze are readily apparent. Even wind can be determined by cloud patterns, alignments and movement from successive photos.[10]

Infrared spectrum

The

Fishermen and farmers are interested in knowing land and water temperatures to protect their crops against frost or increase their catch from the sea. Even El Niño phenomena can be spotted. Using color-digitized techniques, the gray shaded thermal images
can be converted to color for easier identification of desired information.

Types

The geostationary Himawari 8 satellite's first true-colour composite PNG image
The geostationary GOES-17 satellite's Level 1B Calibrated Radiances - True Colour Composite PNG image

Each meteorological satellite is designed to use one of two different classes of orbit: geostationary and polar orbiting.

Geostationary

Geostationary weather satellites orbit the Earth above the equator at altitudes of 35,880 km (22,300 miles). Because of this orbit, they remain stationary with respect to the rotating Earth and thus can record or transmit images of the entire hemisphere below continuously with their visible-light and infrared sensors. The news media use the geostationary photos in their daily weather presentation as single images or made into movie loops. These are also available on the city forecast pages of www.noaa.gov (example Dallas, TX).[12]

Several geostationary meteorological spacecraft are in operation. The United States' GOES series has three in operation: GOES-15, GOES-16 and GOES-17. GOES-16 and-17 remain stationary over the Atlantic and Pacific Oceans, respectively.[13] GOES-15 was retired in early July 2019.[14]

The satellite GOES 13 that was previously owned by the National Oceanic and Atmospheric Association (NOAA) was transferred to the U.S. Space Force in 2019 and renamed the EWS-G1; becoming the first geostationary weather satellite to be owned and operated by the U.S. Department of Defense.[15]

INSAT
which carry instruments for meteorological purposes.

Polar orbiting

Computer-controlled motorized parabolic dish antenna for tracking LEO weather satellites.

Polar orbiting weather satellites circle the Earth at a typical altitude of 850 km (530 miles) in a north to south (or vice versa) path, passing over the poles in their continuous flight. Polar orbiting weather satellites are in sun-synchronous orbits, which means they are able to observe any place on Earth and will view every location twice each day with the same general lighting conditions due to the near-constant local solar time. Polar orbiting weather satellites offer a much better resolution than their geostationary counterparts due their closeness to the Earth.

The United States has the

Metop-C satellites operated by EUMETSAT. Russia has the Meteor and RESURS series of satellites. China has FY
-3A, 3B and 3C. India has polar orbiting satellites as well.

DMSP

LEO
weather satellite transmissions

The

Aurora Australis
have been captured by this 720 kilometres (450 mi) high space vehicle's low moonlight sensor.

At the same time, energy use and city growth can be monitored since both major and even minor cities, as well as highway lights, are conspicuous. This informs

New York City Blackout of 1977
was captured by one of the night orbiter DMSP space vehicles.

In addition to monitoring city lights, these photos are a life saving asset in the detection and monitoring of fires. Not only do the satellites see the fires visually day and night, but the thermal and infrared scanners on board these weather satellites detect potential fire sources below the surface of the Earth where smoldering occurs. Once the fire is detected, the same weather satellites provide vital information about wind that could fan or spread the fires. These same cloud photos from space tell the firefighter when it will rain.

Some of the most dramatic photos showed the 600

Army of Iraq
started on February 23, 1991. The night photos showed huge flashes, far outstripping the glow of large populated areas. The fires consumed huge quantities of oil; the last was doused on November 6, 1991.

Uses

Infrared image of storms over the central United States from the GOES-17 satellite

Snowfield monitoring, especially in the

Sierra Nevada, can be helpful to the hydrologist keeping track of available snowpack for runoff vital to the watersheds
of the western United States. This information is gleaned from existing satellites of all agencies of the U.S. government (in addition to local, on-the-ground measurements). Ice floes, packs, and bergs can also be located and tracked from weather spacecraft.

Even pollution whether it is nature-made or human-made can be pinpointed. The visual and infrared photos show effects of pollution from their respective areas over the entire earth. Aircraft and

solar radiation balance of the tropics. Other dust storms in Asia and mainland China
are common and easy to spot and monitor, with recent examples of dust moving across the Pacific Ocean and reaching North America.

In remote areas of the world with few local observers, fires could rage out of control for days or even weeks and consume huge areas before authorities are alerted. Weather satellites can be a valuable asset in such situations. Nighttime photos also show the burn-off in gas and oil fields. Atmospheric temperature and moisture profiles have been taken by weather satellites since 1969.[17]

Non-imaging sensors

Not all weather satellites are direct

gridded later to form maps
.

International regulation

Weather observation satellite-system, NOAA-M spacecrft

According to the

earth exploration-satellite service for meteorological
purposes.»

Classification

This radiocommunication service is classified in accordance with ITU Radio Regulations (article 1) as follows:
Fixed service (article 1.20)

Frequency allocation

The allocation of radio frequencies is provided according to Article 5 of the ITU Radio Regulations (edition 2012).[19]

In order to improve harmonisation in spectrum utilisation, the majority of service-allocations stipulated in this document were incorporated in national Tables of Frequency Allocations and Utilisations which is with-in the responsibility of the appropriate national administration. The allocation might be primary, secondary, exclusive, and shared.

  • primary allocation: is indicated by writing in capital letters (see example below)
  • secondary allocation: is indicated by small letters
  • exclusive or shared utilization: is within the responsibility of administrations
Example of frequency allocation
Allocation to services
Region 1
Region 2 Region 3
401-402 MHz       METEOROLOGICAL AIDS
SPACE OPERATION (space-to-Earth)
EARTH EXPLORATION-SATELLITE (Earth-to-space)
METEOROLOGICAL-SATELLITE (Earth-to-space)
Fixed
Mobile except aeronautical mobile
8 817.50-8 821.50 MHz METEOROLOGICAL-SATELLITE (Earth-to-space)
and other services

See also

References

  1. NESDIS. Satellites.[link not working] Retrieved on July 4, 2008. Archived July 4, 2008, at the Wayback Machine
  2. Retrieved on July 4, 2008.
  3. ^ .
  4. ^ "VANGUARD - A HISTORY, CHAPTER 12, SUCCESS - AND AFTER". NASA. Archived from the original on May 9, 2008.
  5. ^ "U.S. Launches Camera Weather Satellite". The Fresno Bee. AP and UPI. April 1, 1960. pp. 1a, 4a.
  6. ^ National Environmental Satellite Center (January 1970). "SIRS and the Improved Marine Weather Forecast". Mariners Weather Log. 14 (1). Environmental Science Services Administration: 12–15.
  7. ^ "DSCOVR: Deep Space Climate Observatory | NOAA National Environmental Satellite, Data, and Information Service (NESDIS)". www.nesdis.noaa.gov. Retrieved August 5, 2021.
  8. ^ EUMETSAT – MSG Spectrum Archived November 28, 2007, at the Wayback Machine (PDF)
  9. ^ "EUMETSAT – MFG Payload". Archived from the original on November 25, 2008. Retrieved November 21, 2007.
  10. ^ A. F. Hasler; K. Palaniappan; C. Kambhammetu; P. Black; E. Uhlhorn; D. Chesters. High-Resolution Wind Fields within the Inner Core and Eye of a Mature Tropical Cyclone from GOES 1-min Images (Report). Retrieved July 4, 2008.
  11. Retrieved on January 3, 2009.
  12. ^ Service, US Department of Commerce, NOAA, National Weather. "National Weather Service".{{cite web}}: CS1 maint: multiple names: authors list (link)
  13. .
  14. ^ "GOES-17 Transition to Operations │ GOES-R Series". www.goes-r.gov. Retrieved May 26, 2019.
  15. ^ Balmaseda M, A Barros, S Hagos, B Kirtman, H-Y Ma, Y Ming, A Pendergrass, V Tallapragada, E Thompson. 2020. "NOAA-DOE Precipitation Processes and Predictability Workshop." U.S. Department of Energy and U.S. Department of Commerce NOAA; DOE/SC-0203; NOAA Technical Report OAR CPO-9
  16. ^ "卫星运行" [Satellite Operation]. National Satellite Meteorological Center of CMA (in Chinese). Archived from the original on August 28, 2015.
  17. ^ Ann K. Cook (July 1969). "The Breakthrough Team" (PDF). ESSA World. Environmental Satellite Services Administration: 28–31. Archived from the original (PDF) on February 25, 2014. Retrieved April 21, 2012.
  18. ^ ITU Radio Regulations, Section IV. Radio Stations and Systems – Article 1.52, definition: meteorological-satellite service / meteorological-satellite radiocommunication service
  19. ^ ITU Radio Regulations, CHAPTER II – Frequencies, ARTICLE 5 Frequency allocations, Section IV – Table of Frequency Allocations

External links

Theory
Data
Government policy