William H. Oldendorf

Source: Wikipedia, the free encyclopedia.

William Henry Oldendorf (March 27, 1925 – December 14, 1992) was an American neurologist, physician, researcher, medical pioneer, founding member of the American Society for Neuroimaging (ASN), and originator of the technique of

computed tomography
.

Early life

William "Bill" Oldendorf was born in 1925, the youngest of four children, in Schenectady, New York. According to his sister Dorothy, William developed an interest in science and imaging through his fascination with telescopes. While still in high school, he placed one on the front sidewalk of their abode and studied the stars late into the night.

Academic education

Oldendorf graduated from high school at the age of 15 and afterwards attended Union College in Schenectady, New York—completing premedical studies in just 3 years. He received his medical degree from the Albany Medical College in Albany, New York in 1947.

Medical training

Following medical

Minneapolis, Minnesota; for this reason, he was subsequently certified by the American Board of Psychiatry and Neurology
as a diplomate in both specialties.

Professional career

In 1956, Oldendorf joined the faculty of the new

where his ability to apply techniques from one field to another did not go unnoticed. He was universally characterized as "likable", "friendly", "amusing", "creative", "intense", and "humble".

Oldendorf's interest neuroimaging was precipitated by a dislike for invasive procedures (like pneumoencephalography and direct carotid puncture) that he performed as a clinical neurologist. Oldendorf found that these traumatic, tedious tests provided only limited and indirect information about the brain. At UCLA, he started his seminal investigations into the two major lines of research that would define his career: X-ray shadow radiography and cerebral angiography. The first line was influential in the evolving concept of neuroimaging; the second yielded fundamental knowledge of brain metabolism and mechanisms of the blood–brain barrier.

Contributions to medical science

Role in development of neuroimaging

In 1959, Oldendorf conceived an idea for "scanning a head through a transmitted beam of

CAT scanning
device. When suggested to a leading X-ray manufacturer of the time, the president of the company retorted,

Even if it could be made to work as you suggest, we cannot imagine a significant market for such an expensive apparatus which would do nothing but make a radiographic cross-section of a head.

Faced with this reaction, Oldendorf "turned his attention to other scientific work and heard nothing further about the idea until 1972."

However, his idea was a fundamental discovery which also led to

Computed Tomography
among neurologists to help decrease the use of superfluous and invasive tests.

Blood–brain barrier

Oldendorf made many other discoveries that have significantly affected

drugs
and metabolic substrates enter into the brain. Especially important was his characterization of more than a dozen independent carrier systems, along with their saturation kinetics.

Today, most of what is known of the selective permeability of the blood–brain barrier was either established by Oldendorf in his laboratory, or by others using his ingenious techniques. These results have been essential in developing PET and SPECT imaging; in studying glucose transport and brain metabolism; and in characterizing clinically important diseases such as cerebral ischemia, starvation, and epilepsy. Oldendorf's experiments were also the first to prove that cerebrospinal fluid functions as a "sink" in relationship to brain metabolism, a concept that is being investigated in relation to the pathophysiology of presenile dementias such as Alzheimer's disease.

Professional publications and societies

In his lifetime, Oldendorf wrote three textbooks and over 250 scientific articles, including The Quest for an Image of the Brain: Computerized Tomography in the Perspective of Past and Future Imaging Methods (Raven Press, New York, 1980) and Basics of Magnetic Resonance Imaging (Kluwer Academic Press, Boston, 1988). The book Basics of Magnetic Resonance Imaging is notable for being co-authored with his son and namesake, William Oldendorf, Jr.

Oldendorf was one of the 30 attendees of the Neurology Computed Tomography Symposium, organized by William Kinkel from September 24 to September 25, 1975, in Buffalo, New York. He participated in the ad hoc committee that unanimously voted to form the Society for Computerized Tomography so as to continue its educational activities. Realizing that other imaging modalities may eventually be prominent, the following year Oldendorf pushed to have the name of the society changed to Society for Computerized Tomography and Neuroimaging, and served as its president from 1978 to 1979. This society was to rename itself the American Society for Neuroimaging (ASN) in 1981, also with the prodding of Oldendorf.

Oldendorf was on several editorial boards and was a Fellow of the

National Academy of Sciences
.

Awards and prizes

In 1974, he shared the Ziedses des Plantes Gold Medal (given by the German Society of Neuroradiology and the Medical Physics Society of

Alumni Association
.

Oldendorf was also

Nobel Prize controversy

Despite all his contributions to medical science, and despite the awards won in conjunction with the other eventual winners, Oldendorf was not awarded the

Rosalyn Yalow
, a Nobel laureate herself, nominated Oldendorf for the prize and was reportedly upset that he did not get it. In the January 1980 issue of the journal Science (vol. 207, page 31), William J. Broad wrote an article titled "The Riddle of the Nobel Debate" in which he posited that politics in Stockholm forced the removal of Dr. Oldendorf's name during the nomination process. It was theorized that giving the prize to another American could sway pending patent litigation in Europe over the rights to the CT Scanner.

Death and legacy

Despite the controversy over the Nobel Prize, Oldendorf was remarkably aplomb about the issue. He was supposed to have remarked

Naturally I'm disappointed; but I'll keep working and maybe one day I'll win a Nobel Prize for something else--if I live long enough.

He died unexpectedly on December 14, 1992 from the complications of

heart disease. In his eulogy, L. Jolyon West (Chairman of Psychiatry at UCLA
) stated,

Bill's mind was Einstein's universe, finite, but boundless. Always reaching into spheres you wouldn't imagine.

He was survived by his wife, Stella Oldendorf, three sons, and the implications of his work which are still being investigated.

In his honor, The

scanning.

References