Yeast in winemaking

Source: Wikipedia, the free encyclopedia.
The process of fermentation at work on Pinot noir. As yeast consume the sugar in the must it releases alcohol and carbon dioxide (seen here as the foaming bubbles) as byproducts.

The role of yeast in winemaking is the most important element that distinguishes

fortification with brandy or neutral spirits to kill off the yeast cells. If fermentation is unintentionally stopped, such as when the yeasts become exhausted of available nutrients and the wine has not yet reached dryness, this is considered a stuck fermentation.[3]

The most common yeast associated with

ports and varieties such as Zinfandel and Syrah harvested at high Brix sugar levels. Another common yeast involved in wine production is Brettanomyces whose presence in a wine may be viewed by different winemakers as either a wine fault or in limited quantities as an added note of complexity.[5]

History

French scientist Louis Pasteur discovered the connection between microscopic yeast and the process of fermentation.

For most of the history of wine, winemakers did not know the mechanism that somehow converted sugary grape juice into alcoholic wine. They could observe the fermentation process which was often described as "boiling", "seething" or the wine being "troubled" due to release of carbon dioxide that gave the wine a frothy, bubbling appearance. This history is preserved in the etymology of the word "yeast" itself which essentially means "to boil".[3][6]

In the mid-19th century, the French scientist

Embden–Meyerhof–Parnas pathway.[7]

The yeast species commonly known as Saccharomyces cerevisiae was first identified in late 19th century enology text as Saccharomyces ellipsoideus due to the

aroma of the wine.[3]

In modern winemaking, winemakers have the option to select from a diverse range of yeast strains, each offering distinct characteristics that influence the wine's sensory profile. These strains are readily available for purchase from specialized suppliers.[8] Winemakers can now easily access yeast strains that accentuate desirable features in wine, such as aromatic compounds, mouthfeel, and fermentation kinetics. This commercial availability of yeast strains has revolutionized the art of winemaking by allowing for more precise control over the fermentation process and the resultant wine's character.

Role in winemaking

In the absence of oxygen, yeast cells will take the pyruvate produced by glycolysis and reduce it into acetaldehyde which is further reduced into ethanol "recharging" the NAD+ co-enzymes that is needed for various metabolic processes of the yeast.

The primary role of yeast is to convert the sugars present (namely

co-enzymes needed to keep metabolism going. It is through this process of fermentation that ethanol is released by the yeast cells as a waste product. Eventually, if the yeast cells are healthy and fermentation is allowed to run to the completion, all fermentable sugars will be used up by the yeast with only the unfermentable pentose leaving behind a negligible amount of residual sugar.[4]

Other compounds in wine produced by yeast

If a Chardonnay has too much "buttery" diacetyl notes, winemakers may add fresh yeast to the wine to consume the diacetyl and reduce it to the more neutral-smelling fusel oil 2,3-Butanediol.

While the production of alcohol is the most noteworthy by-product of yeast metabolism from a winemaking perspective, there are a number of other products that yeast produce that can be also influence the resulting wine. This includes

legal limits) to prolong glycerol production beyond just these very nascent stages of fermentation.[10]

Other by-products of yeast include:[3][10]

  • pectins
    in the must by enzymes of the yeast. More commonly found in red wines than white but only in very small amounts between 20–200 mg/L.
  • Fusel oils – Formed by the decomposition of amino acids by the yeast. This includes 2,3-Butanediol which is formed by yeast that are consuming diacetyl, the compound that gives Chardonnay and other wines a "buttery" aroma, reducing it first to acetoin and then to the more neutral-smelling 2,3-Butanediol. Many beer and winemakers who have a wine with too much "butteriness" will often "pitch" fresh yeast cultures into the no longer fermenting tank so that the yeast will consume the diacetyl and reduce the aroma.[11]
  • acidity of wine
    .
  • volatile acidity that can make a wine taste unbalanced and overly acidic. While acetic acid is the main volatile acid produced by yeast, trace amounts of butyric, formic and propionic acids can also be formed depending on the yeast strain. Most countries have wine laws setting the legal limit of volatile acidity, usually expressed as acetic acid, to 1200–2000 mg/L. Acetic acid can also lead to the development of the wine fault ethyl acetate which is characterized by a "nail polish remover" smell. However, small amounts of acetic acid are actually beneficial for the yeast as they use them to synthesis lipids in the cell membrane.[3]
Sherry wines are caused by special yeast native to the Jerez wine region
.

Lees

The lees left over from the secondary fermentation of sparkling wine can be seen on the bottom side of this bottle being inspected. Eventually this wine will go through riddling to collect the lees in the neck, where it will be removed prior to corking.

When yeast cells die, they sink to the bottom of the fermentation vessel where they combine with insoluble

autolysis (or self-metabolize) of the dead yeast cells as well as the reductive conditions that can develop if the lees are not aerated or stirred (a process that the French call bâtonnage). The length of time that a wine spends on its lees (called sur lie) will depend on the winemaking style and type of wine.[12]

The process of leaving the wine to spend some contact with the lees has a long history in winemaking, being known to the

mercaptans and hydrogen sulfide that can appear if the lees layer is more than 10 cm (4 inches) thick and undisturbed for more than a week.[12]

Most of the benefits associated with lees contact deals with the influence on the wine of the mannoproteins released during the autolysis of the yeast cells. Composed primarily of

Secondary fermentation

The production of Champagne and many sparkling wines requires a second fermentation to occur in the bottle in order to produce the carbonation necessary for the style. A small amount of sugared liquid is added to individual bottles, and the yeast is allowed to convert this to more alcohol and carbon dioxide. The lees are then ricked into the neck of the bottle, frozen, and expelled via pressure of the carbonated wine.

Types of yeasts used in winemaking

Film yeast on the surface of wine in a barrel of Vin jaune from the Jura wine region of France.

Yeast

Dekkera.[4]
Unless otherwise noted, this article will commonly refer to the asexual form of wine yeast.

The most common yeast generally associated with winemaking is Saccharomyces cerevisiae which is also used in

Saccharomyces

Saccharomyces cerevisiae as seen under a Differential Interference Contrast (DIC) microscope.

The yeast genus Saccharomyces (sugar mold) is favored for winemaking (for both grapes as well as other

ferment glucose, sucrose and raffinose and metabolize glucose, sucrose, raffinose, maltose and ethanol. However, Saccharomyces cannot ferment or utilize pentoses (such as arabinose) which is usually present in small amount in wines as residual sugars.[4]

In addition to Saccharomyces cerevisiae, other species within the genus Saccharomyces that are involved with winemaking include:[1][3][4]

Influences of different strains on fermentation

While some strains of yeast may influence the sensory characteristics and aromas of young wine, these differences seem to fade as the wine ages.

In 1996, Saccharomyces cerevisiae was the first single-celled,

wines age.[2]

Some distinct difference among various strains include the production of certain "off-flavor" and aromas that may be temporary (but producing a "stinky fermentation") or could stay with the wine and either have to be dealt with through other winemaking means (such as the presence of volatile sulfur compounds like hydrogen sulfide) or leave a faulty wine. Another difference includes the "vigor" or speed of fermentation (which can also be influenced by other factors beyond yeast selection) with some yeast strains having the tendency to do "fast ferments" while others may take longer to get going.[3]

Another less measurable difference that are subject to more debate and questions of winemakers preference is the influence of strain selection on the

polyphenols in the must.[3]

In

Wild yeasts and natural fermentation

Fruit flies are a common vector that transports ambient or "wild" yeast strains within wineries.

In winemaking, the term "wild yeast" has multiple meanings. In its most basic context, it refers to yeast that has not been introduced to the must by intentional inoculation of a cultured strain. Instead, these "wild yeasts" often come into contact with the must through their presence on harvest equipment, transport bins, the surface winemaking equipment and as part of the natural flora of a winery. Very often these are strains of Saccharomyces cerevisiae that have taken residence in these places over the years, sometimes being previously introduced by inoculation of prior vintages. In this context, these wild yeasts are often referred to as ambient, indigenous or natural yeast as opposed to inoculated, selected or cultured yeast. Wineries that often solely rely on these "in-house" strains will sometimes market their wines as being the product of wild or natural fermentations.[3] The (c. 304) Nanfang Caomu Zhuang has the earliest description of winemaking using "herb ferment" (cǎoqū 草麴) wild yeast with rice and various herbs, including the poisonous Gelsemium elegans (yěgé 冶葛).[13][14]

Another use of the term "wild yeast" refers to the non-Saccharomyces genera of yeasts that are present in the vineyard, on the surface of

lees and pomace) into the vineyard.[3]

Unlike the "ambient" Saccharomyces wild yeast, these genera of wild yeasts have very low tolerance to both alcohol and sulfur dioxide. They are capable of starting a fermentation and often begin this process as early as the harvest bin when clusters of grapes get slightly crushed under their own weight. Some winemakers will try to "knock out" these yeasts with doses of sulfur dioxide, most often at the crusher before the grapes are

macerate with skin contact. Other winemakers may allow the wild yeasts to continue fermenting until they succumb to the toxicity of the alcohol they produce which is often between 3–5% alcohol by volume and then letting either inoculated or "ambient" Saccharomyces strains finish the fermentation.[3]

Wineries that wish to cultivate an "in-house" ambient yeast strain will often recycle the leftover pomace of previous vintages as compost in the vineyard.

The use of both "ambient" and non-Saccharomyces wild yeasts carries both potential benefits and risk. Some winemakers feel that the use of resident/indigenous yeast helps contribute to the unique expression of

volatile acidity but also the potential for a stuck fermentation if the indigenous yeast strains are not vigorous enough to fully convert all the sugars.[3]

It is virtually inevitable that non-Saccharomyces wild yeast will have a role in beginning the fermentation of virtually every wine but for the wineries that choose to allow these yeasts to continue fermenting versus minimizing their influence do so with the intent of enhancing complexity through bio-diversity. While these non-Saccharomyces ferment glucose and fructose into alcohol, they also have the potential to create other intermediates that could influence the aroma and flavor profile of the wine. Some of these intermediates could be positive, such as phenylethanol, which can impart a rose-like aroma.[5] However, as with ambient yeasts, the products of these yeasts can be very unpredictable – especially in terms of the types of flavors and aromas that these yeasts can produce.[3]

Inoculated yeast

Some winemakers favor the use of freeze-dried cultured yeast (left) and yeast nutrients (right) because of their relative predictability in beginning and completing a fermentation.

When winemakers select a cultured yeast strain, it is largely done because the winemaker wants a predictable fermentation taken to completion by a strain that has a track record of dependability. Among the particular considerations that are often important to winemakers is a yeast's tendency to:[5]

Inoculated (or pure cultured) yeasts are strains of Saccharomyces cerevisiae that have been identified and plated from wineries across the world (including notable producers from well-known wine regions such as

late-harvest wines), development of surface film on the wine (positive for some Sherry styles but a negative attribute for many other wines), enhancement of a wine's color or certain varietal characteristics by enzymes in the yeast cells and other metabolic products produced by the yeast, foaming and flocculation tendencies, yeasticidal properties (a trait known as "Killer yeast") and tolerance for nutritional deficiencies in a must that may lead to a stuck fermentation.[3]

Re-hydrating freeze dried yeast cultures

Preparing a yeast starter culture and gradually cooling the culture down to the must temperature by adding some wine.

Pure culture yeasts that are grown in a lab are often

cold shock. Ideally winemakers want to add enough inoculum to have a viable cell population density of 5 million cells per milliliter. The exact amount of freeze-dried culture varies by manufacturer and strain of yeast but it is often around 1 gram per gallon (or 25 grams per 100 liters). Wines that could have potentially problematic fermentation (such as high sugar level late harvest or botryized wines) may have more yeast added.[5]

Similarly, re-hydration procedures will also vary depending on the manufacturer and winery. Yeast is often inoculated in a volume of water or grape must that is 5–10 times the weight of the dry yeast. This liquid is often brought to temperature of 40 °C (104 °F) prior to the introduction of the yeast (though some yeast strains may need temperatures below 38 °C (100 °F)

cytoplasmic components escape the cell. Re-hydration at lower temperatures can greatly reduce the viability of the yeast with up to 60% cell death if the yeast is re-hydrated at 15 °C (60 °F). The culture is then stirred and aerated to incorporate oxygen into the culture which the yeast uses in the synthesis of needed survival factors.[5]

The temperature of the starter culture is then slowly reduced, often by the graduated addition of must to get within 5–10 °C (9–18 °F) of the must that the culture will be added to. This is done to avoid the sudden cold shock that the yeast cells may experience if the starter culture was added directly to the must itself which can kill up to 60% of the culture. Additionally, surviving cells exposed to cold shock tend to see an increase in hydrogen sulfide production.[5]

Nutritional needs of wine yeast

Diammonium phosphate (or DAP) is a common additive that provides two necessary nutrients for yeast to have a healthy and sustained fermentation – nitrogen and phosphate.

In order to successfully complete a fermentation with minimum to no negative attributes being added to the wine, yeast needs to have the full assortment of its nutritional needs met. These include not only an available energy source (carbon in the form of sugars such as glucose) and

thiamin and riboflavin) that serve as important growth and survival factors. Among the other nutritional needs of wine yeast:[4]

One traditional way of providing nutrients for the yeast is the ripasso method where the leftover grape skins and pomace (pictured) from a previous fermentation is added to a newly fermenting wine.

Many of these nutrients are available in the must and skins of the grapes themselves but sometimes are supplemented by winemakers with additions such as

ripasso method of adding the leftover pomace from the pressing of other wines into a newly fermenting batch of wine as an additional food source for the yeast.[4]

Saccharomyces cerevisiae can assimilate nitrogen from both inorganic (ammonia and

thiols that can contribute to a "stinky fermentation" or later development into various wine faults.[4]

The role of oxygen

Yeasts are

selective permeability of the yeast cell membrane which becomes critical as the yeast becomes exposed to increasing osmotic pressure and levels of alcohol in the wine. As a waste product of its own metabolism, alcohol is actually very toxic to yeast cells. Yeast with weak survival factors and lacking sterols may succumb to these conditions before fermenting a wine to complete dryness, leaving a stuck fermentation.[4]

Cultured yeasts that are freeze-dried and available for inoculation of wine must are deliberately grown in commercial labs in high oxygen/low sugar conditions that favor the development of these survival factors. One of the reasons that some winemakers prefer using inoculated yeast is the predictability of fermentation due to the high level of survival factors that cultured yeast are assured of having without necessarily needing to expose the wine to additional levels of oxygen. Winemakers using "ambient" yeasts that are resident in their winery may not have this same assurance of survival factors and may need to compensate with other winemaking techniques.[4]

Wild non-Saccharomyces yeasts often need a much greater exposure to oxygen in order to build up survival factors which is why many of these yeasts are often found living oxidatively as "film yeast" on the surface of wines in tanks or barrels.[4]

Wine faults related to yeast

Film yeast like Candida (pictured) and Pichia can cover the surface of a wine with a film layer that not only consumed most of the free sulfur dioxide available to protect the wine but also produces high levels of acetic acid that will contribute to volatile acidity in a wine.

Either directly or indirectly, wine yeast can be a culprit behind a wide variety of

thiols. Also any yeast can have a low tolerance to nutritional deficiencies, temperature fluctuation or extremes and excessive or low sugar levels that may lead to a stuck fermentation.[4]

In the presence of

titratable acidity and shifting the pH of wine upwards to levels that make the wine prone to attack by other spoilage microbes. Commonly called "film yeast", these yeasts are distinguished from the flor sherry yeast that are usually welcomed by winemakers in producing the delicate fino-style wines.[4]

Growth of many unfavorable wild yeasts is generally slowed at lower cellar temperatures, so many winemakers who wish to inhibit the activities of these yeasts before the more favorable Saccharomyces yeast kick in, will often chill their must, such as the practice of "cold soaking" the must during a pre-fermentation maceration at temperatures between 4–15 °C (39–50 °F). Though some species, such as Brettanomyces, will not be inhibited and may even thrive during an extended period of cold soaking.[5]

Brettanomyces

While some wine regions view the influence of Brettanomyces on the wine, in limited amounts, as added complexity, many winemakers view the presence of Brettanomyces species such as Brettanomyces bruxellensis (pictured) in their wineries as a negative influence that needs to be controlled.

The wine yeast Brettanomyces (or "Brett") produces very distinctive aroma compounds,

vector in the transfer of Brettanomyces between tanks and even nearby wineries.[5]

As a fermentation yeast, Brettanomyces can usually ferment a wine up to 10–11% alcohol levels before they die out. Sometimes Brettanomyces already present in a wine that has been inoculated with Saccharomyces cerevisiae will out compete the Saccharomyces strain for nutrients and even inhibit it due to the high levels of acetic acid,

octanoic acid that many strains of Brettanomyces can produce.[5]

Once Brett is in a winery, it is very difficult to control even with strict hygiene and the discarding of barrels and equipment that has previously come into contact with "Bretty" wine. This is because many species of Brettanomyces can use a wide variety of carbon sources in wine and grape must, including ethanol, for metabolism. Additionally, Brett can produce a wide range of by-products that could influence the wine beyond just the 4-EP and 4-EG compounds previously discussed.[4] Many of these compounds, such as the "footprints" of the 4-EP and 4-EG, will still remain in the wine even after yeast cells die and are removed by racking and sterile filtration.[5]

References

  1. ^
  2. ^
  3. ^
  4. ^
  5. ^
  6. ^ Douglas Harper "Yeast" Online Etymology Dictionary Accessed: May 31st, 2012
  7. ^ "Wine Yeast". Scott Labs. Retrieved 23 August 2023.
  8. ^
  9. ^
  10. ^ Brewing Science "Diacetyl: Homebrew Science Archived 2010-02-02 at the Wayback Machine" Brew Magazine November, 2002
  11. ^
  12. ^ Joseph Needham and Huang Hsing-Tsung (2000), Science and Civilisation in China, Volume 6 Biology and Biological Technology, Part 5: Fermentations and Food Science, Cambridge University Press, p. 183.
  13. ^ Li Hui-Lin (1979), Nan-fang ts'ao-mu chuang: a fourth century flora of Southeast Asia, The Chinese University Press, p. 59.

External links