Zoid

Source: Wikipedia, the free encyclopedia.

In

protists.[7] The term is generally not used to describe motile, flagellated sperm found in animals. Zoid is also commonly confused for zooid
which is a single organism that is part of a colonial animal.

Diversity of zoids

A zoid contains one or more flagella for motility. In the various species that produce zoids, there is a high level of diversity in the number of flagella produced. The heterokonts generally produce zoids with 2 flagella,

flagella and the arrangement of the microtubules
varies among species as well. The following sections will briefly outline general characteristics of the zoids found in each subset as well as provide specific examples.

Zoids in heterokonts

heterokont. One flagella, the tinsel flagella, is generally longer and covered with bristles. The other flagella is typically shorter, potentially even shortened to just a basal body, and is generally smooth and whip-like.[7]

  • In
    Green Algae

Green algae have a life cycle that includes an alternation of generations.[9] Zoids can be found in both the haploid and the diploid phases of this life cycle in certain green alga. Number of flagella is one characteristic that aids in the classification of different types of green alga.[9] Zoids are either released through pores or by lysing of the zoid-producing cells in either the gametangium or the sporangium.[10] A majority of the zoids produced within this group are either bi-flagellate or quadri-flagellate. To represent the diversity of zoids found in green alga, below is a list of genera from the family Monostromataceae which is part of the phylum Chlorophyta.[11]

  • Genus Monostroma – produces bi-flagellate gametes and quadri-flagellate zoospores
  • Genus Gayralia – produces bi-flagellate zoids in the monomorphic asexual form
  • Genus Protomonostroma – produces quadri-flagellate zoids
  • Genus Ulvopsis – produces bi-flagellate gametes, bi-flagellate asexual zoids, and quadri-flagellate zoospores
  • Genus Ulvaria – produces biflagellate gametes and quadri-flagellate zoospores
  • In
    Brown Algae

Brown algae (

thalli, unilocular zoidangia produce the sexually or asexually reproductive cells.[2] Below is some vocabulary associated with brown algal zoid production:[1]

  • Plurilocular = many chambered, each chamber produces one zoid
  • Unilocular = one chamber, can produce multiple gametes in one chamber
  • Plurilocular gametangia = structure that has many chambers that produce haploid gametes
  • Plurilocular sporangia = structure that has many chambers that produce diploid spores
  • Plurilocular zoidangia = collective term for plurilocular gametangia and plurlocular sporangia
  • Plurizoids = zoids produced in a plurlocular zoidangia
  • Unilocular sporangia = can produce meiospores or asexual spores
  • Unilocular zoidangia = synonym for unilocular sporangia
  • Unizoids = zoids produced in a unilocular zoidangia

Brown alga zoids have the same two basic flagella discussed in the

Phaeophyceae. In general, the flagella are both inserted laterally.[1]

  • In
    Diatoms

Zoids are not as common in the diatoms as in the algal families.

Zoids in non-vascular plants and fungi

Among the non-vascular plants, specifically the

Bryophytes do reproduce sexually, the male zoids must swim from the antheridia to the archegonia. These zoids are generally bi-flagellate but this can vary species to species.[14]

Fungi are a very diverse group of organisms with very diverse life cycles. Most reproduce using spores and many do not utilize zoids for their reproduction. However, one particular class of organisms that is very closely related to fungi use a similar zoid to the

Zoids in vascular plants

Zoids are found in three types of

spermatozoids of the fern Asplenium onopteris are 8 to 8.5 micrometers in length and contain 50 flagella.[16] The zoid of the cycad can be up to 300 to 500 micrometers long and can contain thousands of flagella.[5] The zoid of the ginkgo is approximately 86 micrometers long and also can contain thousands of flagella.[5]
Because of the high number of flagella associated with both cycads and ginkgo, there has been some debate as to whether they are flagella or cilia. Either way, cycads and Ginkgo are rare woody plants that produce motile gametes.

Evolution

In plants, the zoid, or swimming sperm, is considered to be a trait of the "lower" land plants. In aqueous environments, the necessity for motile reproduction is obvious, but on land this adaptation loses its relevance. The zoid is most common among the non-vascular plants and the "lower" vascular plants. It is hypothesized that as the land plants evolved enclosed ovules, the necessity for a film of water and therefore motile sperm became unnecessary.[4] Motile, flagellated sperm or zoids is rare in angiosperms.

Along the same lines, the Ginkgo is a species that has no close living relative. It is believed to be most closely related to the giant seed ferns which date back to the Jurassic period.[6] This represents what would also be considered a "lower" land plant. Ginkgo were originally classified in the Taxaceae, or yew, family. When it was discovered that ginkgo had motile sperm, they were moved to their own family, Ginkgoaceae.[6]

References

External links

This page is based on the copyrighted Wikipedia article: Zoid. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy