Арифметика Пресбургера
Арифметика Пресбургера — это
арифметики Пеано, исключающая высказывания относительно умножения. Названа в честь польского математика Мойжеша Пресбургера, который в 1929 году предложил соответствующую систему аксиом в логике первого порядка, а также показал её разрешимость
.
Аксиомы
Язык арифметики Пресбургера включает константы 0, 1, одну операцию + и предикат равенства =. Аксиомы имеют вид:
- ¬(0 = x + 1)
- x + 1 = y + 1 → x = y
- x + 0 = x
- (x + y) + 1 = x + (y + 1)
- (P(0) ∧ (P(x)→P(x + 1))) → P(y), где P — формула первого порядка включающая 0, 1, +, = и одну свободную переменную x.
Следует заметить, что (5) на самом деле не одна аксиома, а схема аксиом, представляющая бесконечное множество аксиом, по одной, для каждой формулы P. (5) является формализацией
принципа математической индукции
. Она не может быть эквивалентно заменена никакой конечной системой аксиом. Таким образом арифметика Пресбургера не является конечно аксиоматизируемой.
См. также
- Арифметика Пеано
- Арифметика Робинсона
- Логика первого порядка
Литература
- Cooper, D. C., 1972, «Theorem Proving in Arithmetic without Multiplication» in B. Meltzer and D. Michie, eds., Machine Intelligence. Edinburgh University Press: 91-100.
- Springer-Verlag.
- Fischer, M. J., and Michael O. Rabin, 1974, "«Super-Exponential Complexity of Presburger Arithmetic.» Proceedings of the SIAM-AMS Symposium in Applied Mathematics Vol. 7: 27-41.
- G. Nelson and D. C. Oppen. "A simplifier based on efficient decision algorithms" (англ.) // Proc. 5th ACM SIGACT-SIGPLAN symposium on Principles of programming languages : journal. — Apr. 1978. — P. 141—150.
- Mojżesz Presburger, 1929, «Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt» in Comptes Rendus du I congrès de Mathématiciens des Pays Slaves. Warszawa: 92-101.
- Pugh, William, 1991, «The Omega test: a fast and practical integer programming algorithm for dependence analysis,».
- Reddy, C. R., and D. W. Loveland, 1978, «Presburger Arithmetic with Bounded Quantifier Alternation.» ACM Symposium on Theory of Computing: 320—325.
- Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. — МЦНМО, 2002.
Ссылки
- Online-Proofer Java-апплет, проверяющий формулы арифметики Пресбургера на истинность. (нем.)