Эта статья входит в число добротных статей

Бар (астрономия)

Материал из Википедии — свободной энциклопедии
NGC 1300спиральная галактика с выраженным баром

Бар, также перемычка в

газа в галактическом диске. Бар может присутствовать у дисковых галактиклинзовидных, спиральных и неправильных. От половины до двух третей дисковых галактик, в том числе и Млечный Путь, имеют бар. Наличие и выраженность бара — один из критериев классификации галактик
.

Бар образуется при возникновении гравитационной неустойчивости в тонком диске галактики. Для этого нужна либо достаточно высокая скорость вращения диска, либо небольшая скорость вращения и большие радиальные скорости звёзд. Бары оказывают заметное влияние на родительские галактики и являются одним из основных агентов внутренней вековой эволюции — изменений в галактике в течение длительного времени, не зависящих от её окружения.

Описание и характеристики

Морфологическая классификация галактик Хаббла

Бар, также называемый перемычкой — структура вытянутой формы в плоскости

спиральных галактиках с баром спиральные рукава начинаются не в центре галактики, а на концах бара. Бар может наблюдаться у дисковых галактиклинзовидных, спиральных и неправильных[1][2][3]. У некоторых галактик может быть больше одного бара: известны галактики с двумя и даже с тремя барами[4]
.

Бар — устойчивое образование, которое в отдельно взятой галактике существует на протяжении многих её оборотов. Бар вращается как единое целое, в ту же сторону, что и диск, но, как правило, с немного меньшей угловой скоростью. При этом звёзды, составляющие бар, не находятся в нём всё время, в отличие, например, от балджа. Звёзды постоянно входят в бар и покидают его, но их повышенная концентрация в области бара остаётся, так что внешний вид бара не изменяется — подобным образом возникают и спиральные рукава в теории волн плотности[1][2].

Из всех галактик около трети имеет бар, включая

газ сильнее сосредоточен к центру[6]
.

Наличие и выраженность бара — один из критериев

пересечённые, обозначаемые SB, где он имеется. В системе де Вокулёра кроме нормальных (SA) и пересечённых спиральных галактик (SB) выделяются спиральные галактики переходного типа, обозначаемые SAB. В этой схеме по выраженности бара классифицируют не только спиральные, но и линзовидные и неправильные галактики[7][8][9]
.

Параметризация

Форма бара и его изофот хорошо описывается обобщёнными эллипсами[6][10]:

где и

малая полуоси
, и — координаты вдоль большой и малой оси, а — параметр, задающий форму обобщённого эллипса. Эта формула при превращается в уравнение эллипса. Обычно для описания формы бара лучше всего подходят , но также используется и [6][10].

Распределение поверхностной яркости в баре часто моделируется модифицированной функцией Феррерса. Для распределения яркости вдоль большой оси бара она имеет следующий вид[11]:

В этой формуле — поверхностная яркость в центре бара, — расстояние до границы бара, дальше которой поверхностная яркость считается равной нулю. Параметры и отвечают за скорость убывания яркости, соответственно, у границы и у центра бара[11].

Закон Серсика, часто используемый для описания балджей и дисков
, может использоваться и для баров — для них обычно находится в диапазоне от 0,5 до 1[6][10].

Возникновение баров

Бар образуется при возникновении гравитационной неустойчивости в тонком диске галактики. Существует как минимум два механизма образования бара: барообразующая неустойчивость и неустойчивость вытянутых орбит[12].

Барообразующая неустойчивость, или бар-мода образует бар, если скорость вращения диска достаточно велика, в этом случае образование бара становится энергетически выгодным. Количественно критерий неустойчивости выражается через энергию вращения диска и его потенциальную энергию : если отношение составляет более 0,14—0,20 (точное значение зависит от параметров модели), то за 1—2 оборота галактики возникает бар. Аналогичная ситуация возникает в механике несжимаемых самогравитирующих тел: при достаточно больших энергиях вращения они превращаются из сплюснутого

тёмного гало. По всей видимости, крупные бары образуются именно таким образом[12]
.

Неустойчивость вытянутых орбит, напротив, возникает при медленном вращении диска и больших радиальных скоростях звёзд. Если звёзды движутся по близким вытянутым орбитам, то из-за гравитационного взаимодействия между ними орбиты прецессируют и сближаются ещё больше, и также образуется бар. Такой механизм образования бара неэффективен для слабо вытянутых орбит, поэтому он должен проявляться в основном в центральных областях диска, в которых радиальная дисперсия скоростей звёзд велика. Кроме того, бары, которые образуются таким способом, должны иметь малую скорость вращения[12].

Влияние на галактики

Бары оказывают заметное влияние на родительские галактики и являются одним из основных агентов

угловые моменты звёзд и газа, что приводит к изменению галактической структуры[6][13]
.

Бары перемещают газ таким образом, что он формирует

спиральные рукава и кольца, давление в нём увеличивается и из атомарного он становится молекулярным, в нём начинается звездообразование. Из областей вне бара газ перемещается к окраине галактики, а из области в пределах радиуса бара — в самый центр. Это приводит к сглаживанию градиентов металличности и к увеличению центрального сосредоточения газа, что и наблюдается в галактиках с барами (см. выше[⇨]). Сосредоточение газа в центре, в свою очередь, может приводить к активности галактического ядра, однако в галактиках с активными ядрами бары не наблюдаются чаще, чем в галактиках без активного ядра[6][13]
.

Бары также влияют на движение звёзд. Посредством бара угловой момент перераспределяется между звёздным диском и

масс Солнца. Балджи, сформированные таким образом, частично сохраняют динамические свойства диска и называются псевдобалджами. В ближней Вселенной такими являются балджи многих галактик, возможно даже большинства, в том числе и Млечного Пути[6][13]
.

Примечания

  1. Swinburne University of Technology. Дата обращения: 15 октября 2021. Архивировано
    16 марта 2022 года.
  2. 1 2 Засов, Постнов, 2011, с. 377.
  3. Сурдин В. Г. Бар Галактики. Астронет. Дата обращения: 19 октября 2021. Архивировано 19 октября 2021 года.
  4. .
  5. 15 марта 2022 года.
  6. 19 декабря 2021 года.
  7. ГАЛА́КТИКИ : [арх. 29 сентября 2021] / В. А. Гаген-Торн // Восьмеричный путь — Германцы. — М. : Большая российская энциклопедия, 2006. — С. 301-302. — (Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов ; 2004—2017, т. 6). — ISBN 5-85270-335-4.
  8. Encyclopedia Britannica. Дата обращения: 19 октября 2021. Архивировано
    19 октября 2021 года.
  9. University of Alabama. Дата обращения: 19 октября 2021. Архивировано
    23 октября 2021 года.
  10. .
  11. 26 февраля 2022 года.
  12. 1 2 3 Засов, Постнов, 2011, с. 378—380.
  13. 1 2 3 Сурдин, 2017, с. 323—325.

Литература