Вириал

Материал из Википедии — свободной энциклопедии

Вириал для множества точечных частиц в механике определяется как скалярная функция:

где и  — пространственные векторы

координат
и сил для -й частицы.

Выражение «вириал» происходит от латинских слов «vis», «viris» — «сила» или «энергия». Оно было введено

Клаузиусом в 1870 году
.

Теорема о вириале

Для стабильной системы, связанной потенциальными силами, справедлива теорема о вириале[1]:

где представляет среднюю полную кинетическую энергию и  — сила, действующая на -ю частицу.

В частном случае, когда соответствующая силе потенциальная энергия взаимодействия пропорциональна -й степени расстояния между частицами , вириальная теорема принимает простую форму

Другими словами, удвоенная средняя полная кинетическая энергия равна -кратной средней полной потенциальной энергии .

Значение теоремы о вириале состоит в том, что она позволяет вычислить среднюю полную кинетическую энергию даже для очень сложных систем, недоступных для точного решения, которые рассматривает, например,

эквипарциальную теорему (теорема о равномерности распределении энергии по степеням свободы) или вычислить предел Чандрасекара для устойчивости белого карлика
.

Производная по времени и усреднение

С вириалом тесно связана другая скалярная функция:

где есть импульс -й частицы.

Производную по времени от функции можно записать так:

или в более простой форме

Здесь масса -й частицы,  — полная сила, действующая на частицу, а  — полная кинетическая энергия системы

Усреднение этой производной за время определяется следующим образом:

откуда мы получим точное решение

Вириальная теорема

Вириальная теорема утверждает:

Если , то

Имеется несколько причин того, почему усреднение производной по времени исчезает, то есть . Одна часто цитируемая причина апеллирует к связанным системам, то есть системам, которые остаются ограниченными в пространстве. В этом случае функция обычно ограничена двумя пределами, и , и среднее стремится к нулю в пределе очень долгих времен :

Данный вывод справедлив лишь для тех систем, в которых функция зависит только от времени и не зависит существенно от координат. Если среднее значение производной по времени , вириальная теорема имеет ту же степень приближения.

Соотношение с потенциальной энергией

Полная сила , действующая на частицу , есть сумма всех сил действующих со стороны других частиц в системе

где  — сила, действующая на частицу со стороны частицы . Отсюда, слагаемое в производной по времени от функции , содержащее силу, можно переписать в виде:

Поскольку отсутствует самодействие (то есть , где ), мы получим:

[2]

где мы предположим, что выполняется третий закон Ньютона, то есть (равны по модулю и противоположны по направлению).

Часто случается, что силы могут быть получены из потенциальной энергии , которая является функцией только расстояния между точечными частицами и . Поскольку сила — это градиент потенциальной энергии с обратным знаком, мы имеем в этом случае

который равен по модулю и противоположен по направлению вектору  — силе, которая действует со стороны частицы на частицу , как можно показать простыми вычислениями. Отсюда силовое слагаемое в производной от функции по времени равно

Применение к силам, зависящим от расстояния степенным образом

Часто оказывается, что потенциальная энергия имеет вид степенной функции

где коэффициент и показатель  — константы. В таком случае, силовое слагаемое в производной от функции по времени задаётся следующими уравнениями

где  — полная потенциальная энергия системы:

В тех случаях, когда среднее от производной по времени , выполняется уравнение

Обычно приводимый пример —

гравитационное притяжение
, для которого . В том случае, средняя кинетическая энергия — половина средней отрицательной потенциальной энергии

Этот результат является замечательно полезным для сложных гравитационных систем, типа солнечная система или галактика, и выполняется ещё для электростатической системы, для которой также.

Хотя это выражение получено для классической механики, вириальная теорема верна и для квантовой механики.

Учёт электромагнитных полей

Вириальную теорему можно обобщить на случай электрических и магнитных полей. Результат:[3]

где  — момент инерции,  —

вектор Пойнтинга
,  — кинетическая энергия «жидкости»,  — случайная тепловая энергия частиц, и  — энергия электрического и магнитного поля в рассматриваемом объёме системы,  — тензор давления жидкости, выраженный в локальной движущейся системе координат, сопутствующей жидкости:

и  — тензор энергии-импульса электромагнитного поля:

Плазмоид — ограниченная конфигурация магнитных полей и плазмы. С помощью вириальной теоремы легко показать, что любая такая конфигурация расширяется, если не сдерживается внешними силами. В конечной конфигурации поверхностный интеграл исчезнет без оказывающих давление стен или магнитных катушек. Так как все другие слагаемые справа положительные, ускорение момента инерции также будет положительно. Легко оценить время расширения . Если полная масса ограничена в пределах радиуса , то момент инерции — примерно , и левая сторона в вириальной теореме — . Слагаемые справа составляют в целом величину порядка , где  — большее из плазменного давления или магнитного давления. Приравнивая эти два члена и учитывая, что , , , где есть масса иона,  — концентрация ионов,  — объём плазмоида,  — постоянная Больцмана,  — температура, для находим:

где является скоростью

волны Альфена
, если магнитное давление выше, чем плазменное давление). Таким образом, время жизни плазмоида, как ожидают, будет равняться по порядку величины акустическому (альфеновскому) времени прохождения.

Релятивистская однородная система

В случае, когда в физической системе учитывается поле давления, электромагнитное и гравитационное поля, а также поле ускорений частиц, теорема вириала в релятивистской форме записывается так:[4]

причём величина превышает кинетическую энергию частиц на множитель, равный фактору Лоренца частиц в центре системы. В обычных условиях можно считать, что , и тогда видно, что в теореме вириала кинетическая энергия связана с потенциальной энергией не коэффициентом 0,5, а скорее коэффициентом, близким к 0,6. Отличие от классического случая возникает за счёт учёта поля давления и поля ускорений частиц внутри системы, при этом производная от скалярной функции не равна нулю и должна рассматриваться как производная Лагранжа.

Анализ интегральной теоремы обобщённого вириала позволяет найти на основе теории поля формулу для среднеквадратичной скорости типичных частиц системы, не используя понятия температуры:[5]

где есть скорость света,  — постоянная поля ускорений,  — плотность массы частиц,  — текущий радиус.

В отличие от теоремы вириала для частиц, для электромагнитного поля теорема вириала записывается следующим образом: [6]

где энергия

рассматривается как кинетическая энергия поля, связанная с 4-током , а величина

задаёт потенциальную энергию поля, находимую через компоненты электромагнитного тензора.

См. также

Примечания

  1. Сивухин Д. В. Общий курс физики. Механика. — М.: Наука, 1979. — Тираж 50 000 экз. — с. 141.
  2. Доказательство этого равенства
  3. Schmidt G. Physics of High Temperature Plasmas. — Second edition. — Academic Press, 1979. — p. 72.
  4. .
  5. .
  6. Fedosin S.G. The Integral Theorem of the Field Energy. Архивная копия от 23 июня 2019 на Wayback Machine Gazi University Journal of Science. Vol. 32, No. 2, pp. 686-703 (2019). http://dx.doi.org/10.5281/zenodo.3252783.

Литература

  • Goldstein H. Classical Mechanics. — 2nd. ed. — Addison-Wesley, 1980. — ISBN 0-201-02918-9.