Геликоидный теплообменник

Геликоидный теплообменник — класс теплообменных аппаратов, отличительной особенностью которых является большая скорость прохода среды. По принципу действия они делятся на три группы: скоростные теплообменники труба в трубе, скоростные кожухотрубные теплообменники, и интенсифицированные теплообменники. В профессиональной среде также используется название скоростной теплообменник. Все геликоидные теплообменные аппараты являются по сути своей рекуператорами, так как теплота передаётся от одного теплоносителя к другому непрерывно через стенку.
Геликоидный теплообменник труба в трубе
Представляет собой простейший теплообменный аппарат, зачастую собранный кустарным способом из подручных материалов (двух труб различных диаметров, вставленных друг в друга). Все теплообменники труба в трубе являются скоростными за счёт отсутствия преград и, как следствие, низкого гидравлического сопротивления[1][2].
Принцип действия такого аппарата заключается в прохождении теплоносителя под большим давлением по внутренней трубе, в то время как нагреваемая среда проходит по внешней трубе[2].
Геликоидный кожухотрубный теплообменник
Этот тип теплообменников состоит из трёх частей: корпус (кожух), трубный пучок и перегородки. Трубный пучок приварен через трубные решетки к торцам кожуха. Основным отличием от обычных кожухотрубных аппаратов является наличие перегородок, которые увеличивают скорость теплоносителя[3].
Геликоидный интенсифицированный теплообменник
Это теплообменник, представляющий собой закреплённый в спиральношовном корпусе пучок профилированных трубок из коррозионностойкого материала (нержавеющей стали или титана), через стенки которых осуществляется теплопередача от потока греющей среды к потоку нагреваемой. Трубки имеют геликоидный профиль. Основное отличие теплообменников такой конструкции заключается именно в профилированной теплообменной поверхности трубок. Основы этой конструкции разрабатывались ещё во времена СССР[4].

Принцип действия скоростных теплообменных аппаратов основан на явлении
Закручивание потока среды, проходящей по трубному пространству, осуществляется посредством изменения профиля труб (геликоидная поверхность). Закручивание потока среды, проходящей по межтрубному пространству, осуществляется за счёт спиралевидного шва корпуса и нерегулярной компоновки труб трубного пучка[7][8][9].
Помимо функции закручивания потоков, винтовые составляющие трубок и корпуса являются своеобразными рёбрами жёсткости конструкции. Возможность применения тонколистовой стали при изготовлении корпуса и трубок трубного пучка приводит к снижению веса аппарата. Такое решение является нетрадиционным в производстве стандартных теплообменных аппаратов, использующих толщину стенок для усиления прочностных свойств конструкций[10].
За счёт облегчения и уплотнения трубного пучка в опорных элементах (трубных досках) из полимерных материалов в скоростных аппаратах достигается максимально возможная поверхность теплообмена.
Характеристики. Для изготовления корпуса и трубного пучка используются доступные коррозионностойкие материалы: нержавеющая сталь
Примечания
- ↑ Алхасов А. Б., Алишаев М. Г. Освоение низкопотенциального тепла. — М. : Книга по Требованию, 2012. — С. 280. — ISBN 978-5-9221-1440-0.
- ↑ 1 2 Виды теплообменников, изготовление теплообменника труба в трубе . stroi-specialist.ru. Дата обращения: 30 августа 2016. Архивировано 26 августа 2016 года.
- ↑ М. П. Малков. Справочник по физико-техническим основам глубокого охлаждения. — М. : ФИЗМАТЛИТ, 2012. — С. 210. — ISBN 978-5-458-48036-9.
- ↑ Некрасов, Денисов, Мещанинов, Тушаков. Труба теплообменника . База патентов СССР. Дата обращения: 26 августа 2016. Архивировано 14 сентября 2016 года.
- ↑ Bryan Holland. патент США (англ.). United States Patent Application Publication. Дата обращения: 26 августа 2016.
- ↑ В. В. Елисеев, Ю. М. Ветюков, Т. В. Зиновьева. расчёт геликоидальных оболочек . Издательство сибирского отделения Российской академии наук. Дата обращения: 26 августа 2016. Архивировано 16 сентября 2016 года.
- ↑ Rigoberto E. M. Morales. Моделирование свободной поверхности потока в геликоидном канале с конечным шагом (англ.). The Scientific Electronic Library Online. Дата обращения: 26 августа 2016.
- ↑ Багоутдинова А.Г. математическое описание поверхностей сложных каналов типа «конфузор-диффузор» . Казанский государственный архитектурно-строительный университет. Дата обращения: 26 августа 2016. Архивировано 16 сентября 2016 года.
- ↑ Описание поверхностей с геликоидной нарезкой (англ.). Corvallis Forestry Research Community. Дата обращения: 26 августа 2016. Архивировано 14 августа 2016 года.
- ↑ M. Nitsche and R.O. Gbadamosi. Heat exchanger design guide. — Elsevier Inc., 2016. — ISBN 978-0-12-80-37-64-5.
- ↑ Технические показатели кожухотрубных водоводяных теплообменников . ВУнивере.ру. Дата обращения: 28 августа 2016. Архивировано 17 сентября 2016 года.