Интерференция в тонких плёнках

Материал из Википедии — свободной энциклопедии
Интерференция отражённого света от поверхности мыльного пузыря

Интерфере́нция в тóнких плёнках — явление, которое возникает в результате разделения луча света при отражении от верхней и нижней границ тонкой плёнки. В результате возникают две световые волны, которые могут интерферировать. Тонкоплёночная интерференция объясняет цветовую палитру, видимую в свете, отражённом от мыльных пузырей и масляных плёнок на воде. Это явление также является основополагающим механизмом, используемым в объективах камер, зеркалах, оптических фильтрах и антибликовых покрытиях.

Теория

Луч света длиной волны , распространяющийся в воздушной среде с показателем преломления , при падении на поверхность плёнки с показателем преломления разделится на два луча. Часть отражается на верхней поверхности, а часть преломляется. Преломлённый луч достигает нижней границы, затем отражается от неё и, снова преломившись, выходит в воздушную среду когерентным с первым лучом. В силу условия когерентности двух лучей, наблюдается интерференционная картина, которая определяется оптической разностью хода между интерферирующими лучами:

. (1)
Интерференция в тонких плёнках

Учитывая закон преломления (закон Снеллиуса):

Получаем:

Подставляем в

.[1]

Два луча дадут максимум, если и будет минимум, если

Условие максимума интенсивности света при интерференции:

Условие минимума интенсивности света при интерференции:

История

Интерференция на перьях павлина
Лазерный выходной соединитель покрыт множеством плёнок, уложенных друг на друга, для достижения отражательной способности 80 % при 550 нм. Слева: Зеркало обладает высокой отражающей способностью к жёлтому и зелёному цветам, но с высокой степенью пропускания к красному и синему. Справа: Зеркало пропускает 25 % лазерного излучения 589 нм.

Тонкоплёночная интерференция является обычно наблюдаемым явлением в природе, которое встречается у разных растений и животных. Одно из первых известных исследований этого феномена было проведено Робертом Гуком в 1665 году. Гук постулировал, что радуга в павлиньих перьях была вызвана тонкими чередующимися слоями пластины и воздуха [2].

В 1816 году Френель дополнил волновую теорию света. Тем не менее, очень мало было объяснений радуги до 1870-х годов, когда Джеймс Максвелл и Генрих Герц помогли объяснить электромагнитную природу света.

После изобретения интерферометра Фабри — Перо в 1899 году механизмы тонкоплёночных помех можно было продемонстрировать в более широком масштабе. Однако до начала XX века учёные объясняли радужный окрас у различных животных, например павлины и жуки-скарабеи, наличием красителей или пигментов, которые изменяют цвет при разных углах наблюдения.

В 1919 году лорд Рэлей предположил, что яркие, меняющиеся цвета были вызваны не красителями, а микроскопическими структурами, которые он назвал «структурными цветами» [3].

Первое производство тонкоплёночных покрытий произошло совершенно случайно. В 1817 году Йозеф Фраунгофер обнаружил, что потускнение стекла с азотной кислотой может уменьшить отражения на поверхности.

В 1819 году, наблюдая как слой спирта испаряется с листа стекла, Фраунгофер отметил, что цвета появились непосредственно перед тем, как жидкость полностью испарилась, и выяснилось, что любая тонкая плёнка из прозрачного материала будет создавать цвета.

Небольшое продвижение было сделано в технологии тонкоплёночного покрытия в 1936 году, когда Джон Стронг начал испарять флюорит, чтобы сделать антиотражающие покрытия на стекле.

В 1939 году Уолтер Х. Геффкен создал первые интерференционные фильтры с использованием диэлектрических покрытий.

Применение

В коммерческих проектах тонкие плёнки используются в антибликовых покрытиях, зеркалах и оптических фильтрах. Они могут быть спроектированы для контроля количества света, отражённого или прошедшего на поверхности для определённой длины волны.

Эллипсометрия — это метод, который часто используется для измерения свойств тонких плёнок. Поляризованный свет отражается от поверхности плёнки и измеряется детектором. Затем проводится модельный анализ, в котором эта информация используется для определения толщины слоя плёнки и показателей преломления. Двойная поляризационная интерферометрия является новым методом измерения показателя преломления и толщины тонких плёнок молекулярного масштаба.

Галерея

  • Яркая интерференционная картина наблюдается, когда свет отражается от верхней и нижней границ тонкой масляной пленки. Различные полосы образуются по мере уменьшения толщины плёнки от центральной точки стекания.
    Яркая интерференционная картина наблюдается, когда свет отражается от верхней и нижней границ тонкой масляной пленки. Различные полосы образуются по мере уменьшения толщины плёнки от центральной точки стекания.
  • Цвета в свете отражаются от мыльного пузыря
    Цвета в свете отражаются от мыльного пузыря
  • Демонстрация разницы длины оптического пути для света, отражённого от верхней и нижней границ тонкой плёнки.
    Демонстрация разницы длины оптического пути для света, отражённого от верхней и нижней границ тонкой плёнки.
  • Тонкоплёночные помехи, вызванные размораживанием покрытия ITO на окне кабины Airbus.
    Тонкоплёночные помехи, вызванные размораживанием покрытия ITO на окне кабины Airbus.
  • Бензин на воде показывает образец ярких и тёмных полос при освещении лазерным светом 589 нм.
    Бензин на воде показывает образец ярких и тёмных полос при освещении лазерным светом 589 нм.
  • Конструктивное фазовое взаимодействие
    Конструктивное фазовое взаимодействие
  • Разрушительное фазовое взаимодействие
    Разрушительное фазовое взаимодействие
  • Интерференция в тонких плёнках в мыльном пузыре. Цвет зависит от толщины плёнки.
    Интерференция в тонких плёнках в мыльном пузыре. Цвет зависит от толщины плёнки.
  • Падающий на мыльную плёнку свет в воздухе
    Падающий на мыльную плёнку свет в воздухе
  • Свет, падающий на масляную плёнку на воде
    Свет, падающий на масляную плёнку на воде
  • Свет, падающий на антибликовое покрытие на стекле
    Свет, падающий на антибликовое покрытие на стекле
  • Голубые пятна на крыльях бабочки Павлиний глаз обусловлены интерференцией в тонких плёнках.[1]
    Голубые пятна на крыльях бабочки Павлиний глаз обусловлены интерференцией в тонких плёнках.[1]
  • Блеск цветов лютика обусловлен интерференцией в тонких плёнках.[2]
    Блеск цветов лютика обусловлен интерференцией в тонких плёнках.[2]
  • Оптическое окно с антибликовым покрытием. Под углом 45° покрытие немного толще падающего света, в результате чего центральная длина волны смещается в сторону красного, и на фиолетовом конце спектра появляются отражения. При 0°, для которого было разработано это покрытие, отражения практически не наблюдается.
    Оптическое окно с антибликовым покрытием. Под углом 45° покрытие немного толще падающего света, в результате чего центральная длина волны смещается в сторону красного, и на фиолетовом конце спектра появляются отражения. При 0°, для которого было разработано это покрытие, отражения практически не наблюдается.
  • Закалка цветов происходит при нагреве стали и на поверхности образуется тонкая плёнка оксида железа. Цвет указывает на температуру, которую достигла сталь, что сделало это одним из самых ранних практических применений интерференции в тонких плёнках.
    Закалка цветов происходит при нагреве стали и на поверхности образуется тонкая плёнка оксида железа. Цвет указывает на температуру, которую достигла сталь, что сделало это одним из самых ранних практических применений интерференции в тонких плёнках.
  • Радужные интерференционные цвета в масляной плёнке
    Радужные интерференционные цвета в масляной плёнке
  • Интерференция на голубином зобе
    Интерференция на голубином зобе

См. также

Примечания

Литература

Ссылки