Криволине́йная систе́ма координа́т, или криволине́йные координа́ты, —
прямолинейным, последние являются частным случаем первых. Применяются обычно на плоскости (n=2) и в пространстве (n=3); число координат равно размерности пространства
При рассмотрении криволинейных координат в данном разделе мы будем полагать, что рассматриваем трёхмерное пространство (n=3), снабжённое
декартовыми координатами
x, y, z. Случай других размерностей отличается лишь количеством координат.
В случае евклидова пространства
дифференциала дуги
, будет в этих координатах иметь вид, соответствующий единичной матрице:
Общий случай
Криволинейные координаты в трёхмерном аффинном пространстве
Пусть , , — некие криволинейные координаты, которые мы будем считать заданными гладкими функциями от x, y, z.
Для того, чтобы три функции , , служили координатами в некоторой области пространства, необходимо существование обратного отображения:
где — функции, определённые в некоторой области наборов координат.
Этот раздел нужно дополнить.
Пожалуйста, улучшите и дополните раздел.(26 марта 2014)
Локальный базис и тензорный анализ
В тензорном исчислении можно ввести векторы локального базиса: , где — орты декартовой системы координат, — матрица Якоби, координаты в декартовой системе, — вводимые криволинейные координаты.
Нетрудно видеть, что криволинейные координаты, вообще говоря, меняются от точки к точке.
Укажем формулы для связи криволинейных и декартовых координат: где , где Е — единичная матрица.
Произведение двух векторов локального базиса образует метрическую матрицу: , где контравариантный, ковариантный и смешанный символ Кронекера
Таким образом любое поле тензора ранга n можно разложить по локальному полиадному базису:
Например, в случае поле тензора первого ранга (вектора) :
Ортогональные криволинейные координаты
В евклидовом пространстве особое значение имеет использование ортогональных криволинейных координат, поскольку формулы, имеющие отношение к длине и углам, выглядят в ортогональных координатах проще, нежели в общем случае. Что связано с тем, что метрическая матрица в системах с ортонормированным базисом будет диагональной, что существенно упростит расчёты.
В качестве примера таких систем можно привести сферическую систему в
Принимая во внимание ортогональность систем координат ( при ) это выражение можно переписать в виде
где
Положительные величины , зависящие от точки пространства, именуются коэффициентами Ламе или масштабными коэффициентами. Коэффициенты Ламе показывают, сколько единиц длины содержится в единице координат данной точки и используются для преобразования векторов при переходе от одной системы координат к другой.
Тензор римановой метрики, записанный в координатах , представляет собой диагональную матрицу, на диагонали которой стоя́т квадраты коэффициентов Ламе:
для i≠j
, то есть
Примеры
Полярные координаты (n=2)
Основная статья:
Полярные координаты
Полярные координаты на плоскости включают расстояниеr до полюса (начала координат) и направление (угол) φ.
Связь полярных координат с декартовыми:
Коэффициенты Ламе:
Дифференциал дуги
:
В начале координат функция φ не определена.
Если координату φ считать не числом, а
односвязной области, не включающей начало координат, например, на плоскости без луча
.
Цилиндрические координаты (n=3)
Основная статья:
Цилиндрические координаты
Цилиндрические координаты являются тривиальным обобщением полярных на случай трёхмерного пространства путём добавления третьей координаты z.
Связь цилиндрических координат с декартовыми:
Коэффициенты Ламе:
Дифференциал дуги:
Сферические координаты (n=3)
Основная статья:
Сферические координаты
Сферические координаты связаны с координатами широты и долготы на
единичной сфере
.
Связь сферических координат с декартовыми:
Коэффициенты Ламе:
Дифференциал дуги:
Сферические координаты, как и цилиндрические, не работают на оси z {x=0, y=0}, поскольку координата φ там не определена.
Различные экзотические координаты на плоскости (n=2) и их обобщения
Пожалуйста, улучшите и дополните раздел.(26 марта 2014)
Криволинейные координаты с точки зрения дифференциальной геометрии
Криволинейные координаты, определённые в различных областях евклидова (аффинного) пространства, можно рассматривать как применение к пространству понятия гладкого
атласа карт
.
Этот раздел нужно дополнить.
Пожалуйста, улучшите и дополните раздел.(26 марта 2014)
Литература
Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). — М.: Наука, 1974. — 832 с.
Проставить сноски, внести более точные указания на источники.
Пожалуйста, после исправления проблемы исключите её из списка параметров. После устранения всех недостатков этот шаблон может быть удалён любым участником.