Лазерное ускорение электронов

Материал из Википедии — свободной энциклопедии

Ла́зерное ускоре́ние электро́нов — процесс ускорения

ГэВ
.

Прямое ускорение лазерным полем

Прямое ускорение лазерным полем малоэффективно, поскольку в строго одномерной задаче электрон, попадающий в поле лазерного импульса, после выхода из него имеет ту же

МэВ пучка электронов, имевших энергию 40 МэВ[2]
.

Ускорение в плазменной волне

При распространении достаточно интенсивного лазерного импульса в газе происходит его ионизация с образованием неравновесной плазмы, в которой за счёт

ленгмюровской волны, бегущей вслед импульсу. В этой волне имеются фазы, в которых продольное электрическое поле является ускоряющим для электронов, бегущих вместе с волной. Поскольку фазовая скорость продольной волны равна групповой скорости лазерного импульса в плазме, которая лишь немногим меньше скорости света, релятивистские электроны могут находиться в ускоряющей фазе достаточно длительное время, приобретая значительную энергию. Этот метод ускорения электронов был впервые предложен в 1979 году[3]
.

При увеличении интенсивности лазерного импульса увеличивается амплитуда возбуждаемой плазменной волны и, как следствие, увеличивается темп ускорения. При достаточно высоких интенсивностях плазменная волна становится нелинейной и, в конце концов, обрушается. При этом возможно возникновение сильно нелинейного режима распространения лазерного импульса в плазме — так называемый пузырьковый (или баббл-) режим, в котором позади лазерного импульса образуется полость, похожая на пузырёк, практически полностью лишённая электронов. В этой полости также имеется продольное электрическое поле, способное эффективно ускорять электроны.

Экспериментально в линейном режиме взаимодействия был получен пучок электронов, ускоренный до энергий порядка 1

ГэВ на трассе длиной 3 см. Для компенсации дифракционной расходимости лазерного импульса в этом случае дополнительно использовался волновод в виде тонкого капилляра[4]. Увеличение мощности лазерного импульса до уровня петаватта позволило повысить энергию электронов до 2 ГэВ[5]. Дальнейшее увеличение энергии электронов было достигнуто за счёт разделения процессов их инжекции в ускоряющую плазменную волну и собственно процесса ускорения. Этим методом в 2011 году были получены электроны с энергией около 0,5 ГэВ[6], а в 2013 году был превышен уровень 3 ГэВ, причём общая длина ускорительного канала составила всего 1,4 см (4 мм — инжекционный этап, 1 см — ускорительный этап)[7]. В 2014 году в Национальной лаборатории имени Лоуренса в Беркли были получены первые экспериментальные результаты по ускорению электронов в капилляре длиной 9 см при помощи лазера BELLA. В этих экспериментах было продемонстрировано ускорение до энергии, превышающей 4 ГэВ, лазерным импульсом мощностью 0,3 ПВт, что стало новым рекордом[8]. В 2019 году там же был установлен новый рекорд — при пиковой мощности лазерного импульса 0,85 ПВт были получены электроны с энергией около 7,8 ГэВ в капилляре длиной 20 см[9]
.

В нелинейном режиме взаимодействия максимально достигнутая энергия составила 1,45 ГэВ на трассе длиной 1,3 см. В эксперименте использовался лазерный импульс мощностью 110 ТВт[10].

См. также

Примечания

Литература

Научная

Научно-популярная