Эта статья входит в число добротных статей

Майорановский фермион

Материал из Википедии — свободной энциклопедии
Майорановский фермион
Диаграмма Фейнмана двойного безнейтринного бета-распада
Диаграмма Фейнмана двойного безнейтринного бета-распада
Состав Элементарная частица
Семья Фермион
Группа
Истинно нейтральная частица
Участвует во взаимодействиях Гравитация
Античастица
Сами себе
Теоретически обоснована Был впервые рассмотрен итальянским физиком Этторе Майораной в 1930-х годах[1]
В честь кого или чего названа Этторе Майорана и фермион
Квантовые числа
Электрический заряд 0
Цветовой заряд 0
Барионное число 0
Лептонное число 0
B−L 0
Спин ½
ħ
Магнитный момент 0
Изотопический спин 0
Странность
0
Очарование 0
Прелесть
0
Истинность 0
Гиперзаряд 0

В физике элементарных частиц майора́новский фермио́н, или фермио́н Майора́ны — фермион, который является своей собственной античастицей. Существование таких частиц было впервые рассмотрено итальянским физиком Этторе Майораной в 1937 году[1]. В экспериментах с полупроводниковыми нанопроволоками наблюдались квазичастицы, обладающие свойствами майорановского фермиона. Экспериментальное обнаружение майорановских частиц как в физике высоких энергий, так и в области физики твёрдого тела приведёт к важным последствиям для науки в целом[2].

В физике элементарных частиц

Предполагается, что

изотопы могут испытывать безнейтринный двойной бета-распад; при существующей чувствительности экспериментов этот распад пока не обнаружен, хотя в мире проводятся десятки экспериментов по поиску этого процесса[4][5]
.

Гипотетические частицы нейтралино в суперсимметричных моделях являются фермионами Майораны. Поэтому открытие майорановских фермионов будет дополнительным аргументом для теорий суперсимметрии[6].

Майорановские частицы, в отличие от дираковских, не могут обладать магнитным дипольным моментом (кроме недиагональных компонент магнитного момента, изменяющих аромат)[7][8][9]. Слабое взаимодействие с электромагнитными полями делает майорановские фермионы кандидатами для частиц холодной тёмной материи[10][11].

16 июля 2013 года коллаборация GERDA сообщила[12], что в результате обработки данных первой фазы долговременного эксперимента, проводящегося в итальянской подземной лаборатории Гран-Сассо на криогенном полупроводниковом мультидетекторе, состоящем из германия, обогащённого германием-76, не был обнаружен безнейтринный двойной бета-распад этого изотопа (нижнее ограничение на период полураспада — не менее 3·1025 лет). Это, как и ряд более ранних и менее чувствительных экспериментов, свидетельствует в пользу того, что нейтрино не является майорановской частицей; точнее, ограничивает сверху так называемую майорановскую массу электронного нейтрино, которая для дираковского фермиона должна быть в точности равна нулю. Установленное верхнее ограничение равно приблизительно 0,2—0,4 эВ. В настоящее время ряд как действующих, так и находящихся на стадии планирования и разработки экспериментов по поиску безнейтринного двойного бета-распада нацелен на улучшение инструментальной чувствительности. Последние доступные данные для оценок снизу для полураспада и оценок сверху для массы приведены в таблице на февраль 2023 года[13].

Оценка параметров[14]
Эксперимент Изотоп Полураспад Масса
Gerda 76Ge 8,0·1025 лет 0,12—0,26 эВ
Majorana 76Ge 1,9·1025 лет 0,24—0,53 эВ
KamLAND-Zen 136Xe 10,7·1025 лет 0,05—0,16 эВ
EXO 136Xe 1,1·1025 лет 0,17—0,49 эВ
CUORE 130Te 1,5·1025 лет 0,11—0,50 эВ
KamLAND-Zen[15] 136Xe 2,3·1026 лет 0,036—0,156 эВ

Уравнение Дирака

Математически, фермионы со спином 1/2 описываются уравнением Дирака вида

где m — масса частицы, а матрицы α и β удовлетворяют антикоммутационным соотношениям {αi, αj} = 2δij, {αi, β} = 0, β2 = 1. Так как выбор этих матриц неоднозначен, то их можно выбрать в виде

благодаря чему в исходном уравнении все коэффициенты получаются мнимыми. Тогда уравнение, сопряжённое уравнению Дирака, не меняется:

Решению сопряжённого уравнения Дирака соответствует частица, которая является своей собственной античастицей () и называется майорановским фермионом[16]. Существует бесконечное множество матриц [17].

Решениями этого уравнения выступает четырёхкомпонентный спинор, но такую систему из четырёх уравнений Майораны можно привести к виду двух независимых систем (из двух уравнений каждая) с решениями в виде левых () и правых () майорановских фермионов. Причём массы (mL и mR) в этих новых частицах не обязательно совпадают[2]:

Эти уравнения можно получить, используя

механизм качелей
. Например, в этом случае, масса ненаблюдаемого экспериментально правого нейтрино велика по сравнению с массой электрона (mD), а масса левого составит малую величину порядка [19].

В физике твёрдого тела

Если в физике высоких энергий вопрос о существовании или несуществовании майорановских фермионов остаётся открытым, то никаких сомнений в существовании в сверхпроводниках аналогичных элементарных возбуждений, предсказанных теоретически, нет[3]. Вопрос заключается в демонстрации каких-либо связанных с ними наблюдаемых эффектов из-за технических сложностей[20]. Некоторые квазичастицы (различные возбуждения коллективных состояний в твердотельных системах, ведущие себя подобно частицам) могут описываться как майорановские фермионы, причём их существует несколько типов в связи с возможностью выбрать размерность системы. В физике твёрдого тела майорановские фермионы также называются майорановскими состояниями, чтобы отличать их от решения трёхмерного уравнения Майораны. Интерес к таким квазичастицам (предсказанным, но пока не открытым экспериментально) связан с тем, что они теоретически могут использоваться в кубитах для топологического квантового компьютера — например, для сохранения информации, — при этом из-за своей нелокальной природы они менее чувствительны к влиянию среды[20]. В одномерных системах говорят не о майорановских фермионах, а о майорановских локализованных состояниях, которые не перемещаются в системе свободно, благодаря чему сохраняют свои свойства из-за большого времени декогеренции[21]. Возможное экспериментальное обнаружение[22][23] таких объектов в комбинированных полупроводниковых-сверхпроводниковых наносистемах в сильном магнитном поле требует независимого подтверждения в связи со сложностью детектирования и существованием возможных альтернативных объяснений[24].

Майорановские фемионы могут существовать в экзотических системах, которые достаточно трудно реализуются на практике, например в p-волновых сверхпроводниках[25], полупроводниках в режиме дробного квантового эффекта Холла с фактором заполнением 5/2, на поверхности топологических изоляторов с использованием эффекта близости от s-волновых сверхпроводников[26], либо используя эффект близости между сверхпроводником и ферромагнетиком. С другой стороны, в 2010 году опубликовали две статьи, которые показали, как создать майорановские фермионы в полупроводниковых нанопроволоках[27][28].

Игрушечная модель Китаева

Рис. 1. Разбиение фермионов (первый ряд) на «полуфермионы» или майорановские фермионы в игрушечной модели Китаева в топологически тривиальном (второй ряд) и топологически нетрививальном (третий ряд) случаях[29].

Алексей Китаев[30] предложил рассмотреть гамильтониан бесспинового p-волнового сверхпроводника в терминах вторичного квантования[31]

где t — интеграл перескока, μ — химический потенциал, Δ и θ — амплитуда и фаза параметра порядка. Можно ввести следующие майорановские фермионные операторы для этой задачи и , которые приводят к новому виду гамильтониана

Теперь рассмотрим два предельных случая что проиллюстрировано на рис. 1: в первом случае химический потенциал меньше нуля, μ<0, а остальные параметры обращаются в ноль, Δ=t=0. Тогда спаривание полуфермионов в фермионы происходит тривиальным образом для каждого узла цепочки. Во втором случае, когда химический потенциал равен нулю, μ=0, а интеграл перескока и параметр порядка равны, Δ=t>0, то сумма превращается в слагаемые спаривающие полуфермионы в соседних узлах, причём крайние полуфермионы выпадают из суммы и образуют дважды вырожденный уровень при нуле энергии. Эти два узла можно превратить в обычный фермион сильно нелокальной природы . А гамильтониан приобретает обычный диагональный вид при преобразовании , [29]:

Фактически эта задача не имеет отношения к реальности, но показывает как получить майорановские связные состояния и какой гамильтониан во взаимодействующей системе должен появиться. В качестве возможного материала для реализации майорановских состояний Китаев предложил использовать нанопроволоки из p-волнового сверхпроводника, то есть одномерные сверхпроводники с триплетным состояниями куперовских пар.

Полупроводниковые нанопроволоки

Рис. 2. Формирование топологического закона дисперсии с использованием ур. 2 при последовательном включении спин-орбитального взаимодействия, сверхпроводимости и приложении магнитного поля

В работах 2010 года[32][33] наметился путь реализации майорановских фермионов на практике. Основное достижение заключалось в понимании влияния различных эффектов на майорановские связные состояния. В работе[32] рассматривался гамильтониан (постоянная Планка равна единице) вида

(1)

где волновая функция имеет вид . Первое слагаемое в подынтегральном выражении отвечает за кинетическую энергию частиц с учётом химического потенциала, второе — спин-орбитальное взаимодействие, третье — зеемановская энергия, четвёртое — сверхпроводимость. Нанопроволока ориентирована в направлении y, спин-орбитальное взаимодействие вдоль x, а магнитное поле вдоль z. Матрицы Паули , действуют в спиновом пространстве и в пространстве частиц-античастиц. Индекс 0 отвечает за единичную матрицу. Гамильтониан имеет собственные значения вида

(2)

Вблизи нуля волнового вектора возникает запрещённая зона . Когда выполняется условие говорят о возникновении топологически нетривиальной фазы, а точка, где ширина зоны равна нулю — точкой топологического фазового перехода. Она разделяет топологически тривиальную и нетривиальную фазы. Когда выполняется условие на существование топологически нетривиальной фазы на обоих краях нанопроволоки возникают майорановские связанные состояния при нуле энергии. На рис. 2 показано как возникает четыре ветви дисперсионных соотношений из уравнения 2 при последовательном включении взаимодействий. Спин-орбитальное взаимодействие вида αk приводит к расщеплению параболического закона дисперсии для нанопроволоки. При добавлении сверхпроводимости добавляется электрон-дырочная симметрия, что удваивает количество дисперсионных кривых и возникает сверхпроводящая щель в спектре возбуждений. При приложении магнитного поля появляется

зеемановское расщепление
уровней , которое работает против сверхпроводимости и закрывает щель. При равенстве (химический потенциал ) достигается точка фазового перехода и щель пропадает, но при дальнейшем увеличении магнитного поля щель появляется вновь. Эта щель соответствует состоянию топологической сверхпроводимости[32].

Модель Фу — Кейна

В двумерном случае реализация майорановских фермионов оказалась возможна в модели предложенной учёными Лян Фу и Чарльзом Кейном в 2008 году[34]. Использовав модель топологического изолятора (проводимость в таких материалах существует только на поверхности) с нанесённым на его поверхность тонкого слоя сверхпроводника s-типа, они рассмотрели гамильтониан для волновой функции (в формализме Намбу) , где стрелками обозначены проекции спина, а индекс T отвечает за транспонирование, вида[35]

где v — скорость электрона на уровне энергии Ферми (фермиевская скорость), I — единичная матрица, σ=(σxy) — двумерный вектор составленный из матриц Паули, действующие на спиновые состояния, τx и τy — матрицы Паули действующие на пары и , смешивая их между собой, μ — химический потенциал, Δ0 — параметр порядка сверхпроводника. Блочная часть гамильтониана  — это гамильтониан для

вихри в рассматриваемой системе. Расчёт показывает, что майорановский фермион возникает в ядре вихря[34]
.

Примечания

  1. 1 2 E. Majorana.  // Nuovo Cimento. — 1937. — Vol. 14. — P. 171.
  2. 1 2 Elliott & Franz, 2015, с. 138.
  3. 1 2 Elliott & Franz, 2015, с. 139.
  4. .
  5. .
  6. .
  7. .
  8. .
  9. .
  10. .
  11. .
  12. 14 июля 2019 года.
  13. GERDA, 2018.
  14. 11 февраля 2019 года.
  15. .
  16. .
  17. Pal, 2011.
  18. Elliott & Franz, 2015, с. 141.
  19. Elliott & Franz, 2015, с. 144.
  20. 1 2 Elliott & Franz, 2015, с. 140.
  21. 27 ноября 2020 года.
  22. .
  23. Mourik et al., 2012, с. 1007.
  24. 22 марта 2021 года.
  25. .
  26. 14 октября 2017 года.
  27. 31 декабря 2018 года.
  28. 31 декабря 2018 года.
  29. 1 2 Kitaev A., 2001, с. 133.
  30. Kitaev A., 2001.
  31. Kitaev A., 2001, с. 132.
  32. 1 2 3 Oreg Y., 2010, с. 177002.
  33. Lutchyn R. M., 2010, с. 077001.
  34. 1 2 Fu & Kane, 2008.
  35. Fu & Kane, 2008, с. 1.

Литература