Макроскопический масштаб

Материал из Википедии — свободной энциклопедии
Относительные размеры
объектов, lg м
-20 —
-18 —
-16 —
-14 —
-12 —
-10 —
-8 —
-6 —
-4 —
-2 —
0 —
2 —
4 —
6 —
8 —
10 —
12 —
14 —
16 —
18 —
20 —
22 —
24 —
26 —
28 —
30 —
Диаметр протона — 0,8·10-15
Диаметр атомного ядра — 3·10-15
Размер атома — 3·10-10
Размер водяной капли в
тумане — 5·10-6
Средний рост человека — 1,7
Диаметр Луны — 3,48·106
Диаметр Земли — 1,3·107
Диаметр Солнца — 1,39·109
Средний радиус орбиты
Земли — 1,5·1011
Расстояние до
звезды альфа Центавра — 4·1016
Диаметр Млечного Пути — 7·1020
Расстояние до
туманности Андромеды — 1022
Размер видимой Вселенной — 1027

Макроскопи́ческий масшта́б представляет собой масштаб длины, на котором объекты или процессы имеют размеры, поддающиеся измерению и наблюдению невооружённым глазом.

Применительно к явлениям и абстрактным объектам макроскопический масштаб описывает существование в мире, как мы его воспринимаем, часто в отличие от опыта (

конденсат Бозе-Эйнштейна вблизи абсолютного минимума температуры
, который демонстрирует элементарные квантовые эффекты на макроскопическом уровне. Термин «макроскопический масштаб» может также означать «увеличенный вид», то есть вид, доступный для рассмотрения только с большой перспективой. Макроскопическую позицию можно рассматривать как «большую картину». Противоположностью макроскопическому масштабу является микроскопический масштаб: это объекты меньше тех, которые можно легко увидеть невооружённым глазом и которые требуют линзы или микроскопа, чтобы отчётливо их увидеть.

Макроскопический масштаб в термодинамике

Условно к макроскопическим системам в термодинамике относят объекты с размерами от 10—7 м (100 нм) до 1012 м

нормальных условиях содержит около 27 000 частиц (см. Постоянная Лошмидта). Обычными объектами изучения термодинамическими методами служат системы с числом частиц (структурных единиц) 1015—1055[2] (число Авогадро приближённо равно 6·1023, планета Земля состоит из примерно 1050 атомов[2]). Исключение составляет только абсолютно твёрдое тело, вне зависимости от его размеров не относящееся к сплошным средам и служащее объектом изучения механики, но не термодинамики[2]
.

Верхняя граница применимости законов термодинамики лежит в области макросистем космических масштабов, для которых ещё не существенна обусловленная гравитацией неаддитивность внутренней энергии[3]. В существующем виде законы термодинамики, включая её второе начало, нельзя применять к большим участкам Вселенной (Метагалактике) и тем более ко Вселенной в целом[4]. Область применимости законов термодинамики к космическим объектам ограничена требованием выполнения условия

где Eполная энергия системы; Ug — её гравитационная энергия (для оценки которой можно использовать ньютоновское приближение теории гравитации[5]).

Примечания

Литература

  • Базаров И. П. Термодинамика. — 5-е изд. — СПб.М.Краснодар: Лань, 2010. — 384 с. — (Учебники для вузов. Специальная литература). — ISBN 978-5-8114-1003-3.
  • Борщевский А. Я. Физическая химия. Том 1 online. Общая и химическая термодинамика. — М.: Инфра-М, 2017. — 868 с. — ISBN 978-5-16-104227-4.
  • Миронова Г. А., Брандт Н. Н., Салецкий А. М. Молекулярная физика и термодинамика в вопросах и задачах. — СПб.: Лань, 2012. — 475 с. — (Учебники для вузов. Специальная литература). — ISBN 978-5-8114-1195-5.
  • Сухонос С. И. Масштабная гармония Вселенной. — София—М.: 2000. — 312 с.
  • Терлецкий Я. П. Статистическая физика. — 3-е изд., испр. и доп. — М.: Высшая школа, 1994. — 352 с.
  • Хачкурузов Г. А. Основы общей и химической термодинамики. — М.: Высшая школа, 1979. — 268 с.

Ссылки