Нейтронная оптика

Материал из Википедии — свободной энциклопедии

Нейтро́нная о́птика — раздел нейтронной физики, в рамках которого изучается взаимодействие медленных нейтронов со средой и с электромагнитным и гравитационным полями.

Физика

Распространение в среде

В условиях, когда длина

волны де Бройля
нейтрона (m — масса нейтрона, v — его скорость) сравнима с межатомными расстояниями 10−8 см или больше их, существует некоторая аналогия между распространенем в среде
поляризации света можно сопоставить (в первом приближении) поляризацию нейтронов. Аналогию между нейтронами и фотонами усиливает отсутствие у них электрического заряда. Однако, в отличие от квантов электромагнитного поля, нейтроны при движении в среде в основном взаимодействуют с атомными ядрами, обладают магнитным моментом и массой. Скорость распространения тепловых нейтронов в 105—106 раз меньше, чем для фотонов той же длины волны. В частности, средняя скорость тепловых нейтронов при T = 300 K
(комнатная температура) равна 2200 м/с.

Показатель преломления n для нейтронов на границе вакуум — среда равен:

где λ1 и v1 — длина волны и скорость нейтрона в среде, λ и v — в вакууме. Если ввести усреднённый по объёму вещества потенциал U взаимодействия нейтрона с ядрами, то кинетическая энергия нейтрона в среде равна:

где  — кинетическая энергия нейтрона в вакууме. Потенциал U связан со свойствами среды:

где N — число ядер в единице объёма, b — когерентная длина рассеяния нейтронов ядрами. Отсюда:

где величина называется граничной скоростью. Для большинства ядер b > 0, поэтому Нейтроны с имеют и не могут проникнуть в среду. Такие нейтроны испытывают

Время жизни в свободном состоянии: 885,7 ± 0,8 секунды (период полураспада
614 секунд)

Для большинства веществ v0 порядка нескольких м/с (например, для меди v0 = 5,7 м/с). Для небольшого числа

изотопов
(1H, 7Li, 48Ti, 53Mn, 62Ni и другие) b < 0, U < 0 и граничная скорость не существует. При v > v0 полное отражение возможно лишь в том случае, если нормальная к границе среды компонента скорости нейтрона vн < v0. Угол скольжения φ при этом должен удовлетворять условию:

где  — так называемый критический угол. С ростом скорости нейтронов , а Например, для тепловых нейтронов в меди v = 200 м/с; ; . Учёт поглощения и рассеяния нейтронов в среде приводит к комплексному показателю преломления:

где  — эффективное сечение всех процессов, приводящих к выбыванию нейтронов из пучка, и  — действительная и мнимая части показателя преломления. Для ультрахолодных нейтронов , и их отражение аналогично отражению света от металлов. Для веществ с и нейтронная оптика аналогична световой оптике диэлектриков. В частности, углы падения и преломления нейтронного пучка связаны

законом преломления Снелла
.

Распространение в полях

Учёт внешних магнитных и гравитационных полей приводит к выражению для показателя преломления:

где знаки ± соответствуют двум возможным ориентациям магнитного момента μ нейтрона относительно вектора магнитной индукции B (то есть двум возможным поляризациям нейтронов), g — ускорение свободного падения, H — высота. Аналогичное выражение описывает преломление света в среде с плавно меняющимся показателем преломления (

рефракция
).

Из двузначности третьего слагаемого, чувствительного к поляризации нейтронов, следует, что, выбрав подходящий материал для отражения зеркалами, магнитное поле и угол скольжения, можно создать устройство, в котором полное отражение испытывают только нейтроны одной поляризации (−). Такие устройства используются в качестве поляризаторов и анализаторов нейтронов.

Возможные варианты

Если нейтроны взаимодействуют только с магнитным полем, то:

При этом для нейтронов с создаются условия для полного отражения от границы объёма, содержащего магнитное поле. В неоднородных полях возможна деформация нейтронных пучков.

Двузначность формулы означает существование в магнитном поле разных показателей преломления для нейтронов различных поляризаций, что аналогично двойному лучепреломлению света. Это же явление в нейтронной оптике можно наблюдать без магнитного поля в средах, содержащих поляризованные ядра — ядерный псевдомагнетизм. Двойное лучепреломление имеет место, когда ядерная амплитуда рассеяния зависит от направления спина нейтрона.

Подобие

Дифракция нейтронов во многом подобна дифракции

кристаллов
в ситуациях, практически недоступных для рентгеновских лучей.

Примечания

Литература

  • Широков Ю. М., Юдин Н. П. Ядерная физика. — М.: Наука, 1972. — 670 с.
  • Лущиков В. И. Нейтронная оптика // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Большая российская энциклопедия, 1992. — Т. 3: Магнитоплазменный — Пойнтинга теорема. — С. 273—275. — 672 с. — 48 000 экз. — ISBN 5-85270-019-3.