Обхват (теория графов)

Материал из Википедии — свободной энциклопедии

Обхват

цикла, содержащегося в данном графе[1]. Если граф не содержит циклов (то есть является ациклическим графом), его обхват по определению равен бесконечности[2]
. Например, 4-цикл (квадрат) имеет обхват 4. Квадратная решётка имеет также обхват 4, а треугольная сетка имеет обхват 3. Граф с обхватом четыре и более не имеет треугольников.

Клетки

Кубические графы (все вершины имеют степень три) с как можно меньшим обхватом известны как -клетки (или как (3,)-клетки).

граф Макги — это единственная 7-клетка, а граф Татта — Коксетера — это единственная 8-клетка[3]. Может существовать несколько (графов-)клеток для данного обхвата. Например, существует три неизоморфных 10-клетки, каждая с 70 вершинами — 10-клетка Балабана, граф Харриса и граф Харриса — Вонга
.

Обхват и раскраска графа

Для любого положительного целого существует граф с обхватом и хроматическим числом . Например,

Мыцельскиана
, используемой для создания графа Грёча, образует графы без треугольников со сколь угодно большим хроматическим числом. Пал Эрдёш доказал эту теорему используя вероятностный метод[4].

План доказательства. Назовём циклы длиной не более короткими, а множества с и более вершин — большими. Для доказательства теоремы достаточно найти граф без коротких циклов и больших независимых множеств вершин. Тогда множества цветов в раскраске не будут большими, и, как следствие, для раскраски потребуется цветов.

Чтобы найти такой граф, будем фиксировать вероятность выбора равной . При малых в возникает лишь малое число коротких циклов. Если теперь удалить по вершине из каждого такого цикла, полученный граф не будет иметь коротких циклов, а его число независимости будет не меньше, чем у графа [1].

Близкие концепции

Нечётный обхват и чётный обхват графа — это длины наименьшего нечётного цикла и чётного цикла соответственно.

Окружность графа — это длина наибольшего по длине цикла, а не наименьшего.

Размышления о длине наименьшего нетривиального цикла можно рассматривать как обобщение 1-систолы или большей систолы в систолической геометрии.

Примечания

  1. 1 2 Рейнгард Дистель. Теория графов. — Новосибирск: Издательство института математики, 2002.
  2. Girth -- Wolfram MathWorld.
  3. Andries E. Brouwer. Cages. Электронное приложение к книге Distance-Regular Graphs (Brouwer, Cohen, Neumaier 1989, Springer-Verlag).
  4. .