Теорема Ролля

Материал из Википедии — свободной энциклопедии

Теорема Ро́лля (теорема о нуле производной) — теорема математического анализа, входящая, вместе с теоремами Лагранжа и Коши, в число так называемых «теорем о среднем значении». Теорема утверждает, что

Если вещественная функция , непрерывная на отрезке и дифференцируемая на интервале , принимает на концах отрезка одинаковые значения , то на интервале найдётся хотя бы одна точка , в которой

производная функции
равна нулю: .

Доказательство

Геометрический смысл теоремы Ролля
Следствие теоремы Ролля: между каждыми двумя последовательными корнями многочлена лежит корень его производной

Если функция на отрезке постоянна, то утверждение очевидно, поскольку производная функции равна нулю в любой точке интервала.

Если же нет, поскольку функция непрерывна на , то согласно

теореме Вейерштрасса, она принимает своё наибольшее или наименьшее значение в некоторой точке интервала, то есть имеет в этой точке локальный экстремум, и по лемме Ферма
производная в этой точке равна 0.

Геометрический и физический (механический) смысл

С геометрической точки зрения теорема утверждает, что если ординаты обоих концов гладкой кривой равны, то на кривой найдется точка, в которой касательная к кривой параллельна оси абсцисс.

Механический смысл теоремы в том, что если некоторое тело вернулось в исходную точку, двигаясь по незамкнутой линии, то оно обязано было хотя бы раз остановиться до нулевой скорости.

Существенность условий теоремы и соответствующие контрпримеры

Все условия теоремы: непрерывность функции на отрезке, дифференцируемость на интервале и равенство значений на концах отрезка - существенны. При исключении каждого из этих условий легко подобрать контрпример, свидетельствующий, что заключение теоремы становится неверным.

Следствия

См. также

Примечания

  1. Бахвалов Н. С., Жидков Н. П., Кобельков Г. М. — Численные методы, стр.43

Литература

  • Фихтенгольц Г. М. Основы математического анализа. — М.: «Наука», 1962. — Т. 1. — С. 225. — 607 с.