Технический углерод
Технический углерод (техуглерод, ТУ,
Иногда для наименования технического углерода применяют термин «сажа», что является неточным, поскольку он (в отличие от термина «техуглерод») описывает углеродные продукты, полученные в неконтролируемых условиях, для которых не характерен фиксированный набор свойств.
Структура
Частицы технического углерода представляют собой глобулы, состоящие из деградированных графитовых структур. Межплоскостное расстояние между графитоподобными слоями составляет 0,35—0,365 нм (для сравнения, в графите 0,335 нм).
Размер частиц (13—120 нм) определяет «
Частицы в процессе получения объединяются в так называемые «агрегаты», характеризуемые «структурностью» — разветвлённостью — мерой которой служит показатель абсорбции масла.
Агрегаты слипаются в менее прочные образования — «хлопья».
Кроме атомов углерода в составе технического углерода присутствуют атомы серы, кислорода, азота.
Технический углерод обладает высокоразвитой поверхностью (5—150 м²/г), со значительной
Истинная плотность частиц технического углерода — 1,76—1,9 г/см³. Насыпная плотность хлопьевидного («пылящего») технического углерода составляет 0,33—0,42 г/см³. Для удобства транспортирования и использования технический углерод гранулируют до плотности 0,3—0,6 г/см³.
Применение
Технический углерод применяется в качестве усиливающего компонента в производстве
- чёрного пигмента;
- замедлителя «старения» пластмасс;
- компонента, придающего пластмассам специальные свойства — радаров.
Усиление резин
Усиливающее действие техуглерода в составе полимеров во многом обусловлено его поверхностной активностью. Оценить степень изменения свойств резиновых вулканизатов, содержащих 50 % по массе технического углерода разных марок, можно на основе следующих данных (в качестве основы использован БСК —
Наименование класса | Код | Марка по ASTM D1765 |
Размер частиц, нм |
Растягивающее усилие, МПа |
Сопротивление истиранию, усл.ед. |
---|---|---|---|---|---|
Суперстойкий к истиранию, печной | SAF | N110 | 20—25 | 25,2 | 1,35 |
Промежуточный | ISAF | N220 | 24—33 | 23,1 | 1,25 |
С высокой стойкостью к истиранию, печной | HAF | N330 | 28—36 | 22,4 | 1,00 |
Быстроэкструдирующийся печной | FEF | N550 | 39—55 | 18,2 | 0,64 |
Высокомодульный печной | HMF | N683 | 49—73 | 16,1 | 0,56 |
Полуусиливающий печной | SRF | N772 | 70—96 | 14,7 | 0,48 |
Средний термический | MT | N990 | 250—350 | 9,8 | 0,18 |
Каучук бутадиен-стирольный | — | — | — | 2,5 | ~0 |
Кроме физических свойств технический углерод придаёт наполненным полимерам чёрную окраску. В связи с чем, для производства пластмасс, для которых важен конечный цвет (например обувной
Доля «белой сажи» возрастает и в производстве автомобильных шин, поскольку резиновые вулканизаты на её основе обладают значительно меньшими потерями на трение при качении, что приводит к экономии топлива. Однако, усиливающее действие «белой сажи» и сопротивляемость вулканизатов истиранию пока существенно хуже, чем при использовании технического углерода.
Способы получения
Существует несколько промышленных способов получения технического углерода. В основе всех лежит термическое (пиролиз) или термоокислительное разложение жидких или газообразных углеводородов. В зависимости от применяемого сырья и метода его разложения различают:
- печной — непрерывный процесс, осуществляемый в закрытых цилиндрических проточных реакторах. Жидкое углеводородное сырьё впрыскивается механическими или пневматическими форсунками в поток газов полного сгорания топлива (природный газ, дизельное топливо), причём расходы всех материальных потоков поддерживаются на заданном уровне. Полученную реакционную смесь для прекращения реакций газификации охлаждают, впрыскивая в поток воду. Технический углерод выделяют из отходящего газа и гранулируют;
- ламповый — непрерывный процесс, осуществляемый в специальных проточных реакторах. Жидкое углеводородное сырьё испаряется за счёт подвода теплоты к чаше, в которой оно находится. Пары сырья увлекают внутрь реактора наружный воздух через кольцевой зазор между приёмным зонтом реактора и чашей для сырья. Материальные потоки контролируются лишь частично. Реакционный канал в хвостовой части реактора охлаждается через стенку водой. Технический углерод выделяют из отходящего газа и упаковывают;
- термический — процесс осуществляется в парных реакторах объёмного типа, работающих попеременно. В один из реакторов подают газ (природный, ацетилен) в смеси с воздухом, который, сгорая, нагревает футеровку реактора. В это время во второй предварительно нагретый реактор подают только газ (без воздуха), в ходе протекания реакции футеровка остывает, подачу газа переводят в подготовленный реактор, а остывший разогревают, как описано выше;
- канальный — периодический процесс, осуществляемый в специальных камерах периодического действия, в полу которых установлены щелевые (канальные) горелки. Пламя сгорающего сырья (природный газ) на выходе из горелок сталкивается с охлаждаемым водой металлическим жёлобом, процесс окисления прекращается с выделением технического углерода, который собирается внутри камеры. Полученный продукт периодически выгружают вручную.
Классификация
В
В соответствии с классификацией по
Основные физико-химические характеристики показатели марок техуглерода по ГОСТ приведены ниже:
Марка по ГОСТ 7885 |
Удельная поверхность, 10³м²/кг |
Йодное число ,г/кг |
Абсорбция масла, 10−5м³/кг |
Насыпная плотность, кг/м³ |
---|---|---|---|---|
П245 | 119 | 121 | 103 | 330 |
П234 | 109 | 105 | 101 | 340 |
К354 | 150 | — | — | — |
П324 | 84 | 84 | 100 | 340 |
П514 | — | 43 | 101 | 340 |
П701 | 36 | — | 65 | 420 |
П702 | 37,5 | — | 70 | 400 |
П705 | 23 | — | 110 | 320 |
П803 | 16 | — | 83 | 320 |
Т900 | 14 | — | — | — |
В основе классификации по стандарту
Стандартом описаны (по состоянию на 2006 год) 43 марки техуглерода, из которых индекс «S» имеют 2.
Основные физико-химические характеристики показатели типичных марок техуглерода по
Марка по ASTM D1765
|
Удельная поверхность, 10³м²/кг |
Йодное число ,г/кг |
Абсорбция масла, 10−5м³/кг |
Насыпная плотность, кг/м³ |
---|---|---|---|---|
N110 | 127 | 145 | 113 | 345 |
N220 | 114 | 121 | 114 | 355 |
S315 | 89 | — | 79 | 425 |
N330 | 78 | 82 | 102 | 380 |
N550 | 40 | 43 | 121 | 360 |
N683 | 36 | 35 | 133 | 355 |
N772 | 32 | 30 | 65 | 520 |
N990 | 8 | — | 43 | 640 |
Воздействие на человека
По текущим оценкам Международного агентства по исследованиям в области рака, технический углерод, возможно, является канцерогенным веществом для человека и по этой причине отнесён к группе 2B по классификации канцерогенных веществ. Кратковременное воздействие высоких концентраций пыли техуглерода может вызывать дискомфорт в верхних дыхательных путях за счёт механического раздражения.
Ведущие производители
- Доля лидирующих производителей техуглерода в мировом производстве составляет:
- «Birla» — 14,8 %;
- «Cabot Corporation» — 14,2 %;
- «Orion Engineered Carbons» (бывшая Degussa) — 9,5 %;
- Крупнейшие отечественные производители:
- «Омсктехуглерод» (г. Омск) — 40 %;
- «Ярославский технический углерод» — 32 %;
- «Нижнекамсктехуглерод» — 17 %.
Мировое производство технического углерода в 2009 году составило около 10 000 000 тонн.
См. также
Примечания
Литература
- В. И. Ивановский. Технический углерод. Процессы и аппараты: Учебное пособие. — Омск: ОАО «Техуглерод», 2004.