Углерод-14

Материал из Википедии — свободной энциклопедии
Углерод-14
Название, символ Углерод-14, 14C
Альтернативные названия радиоуглеро́д, радиокарбо́н
Нейтронов 8
Свойства нуклида
Атомная масса 14,003241989(4)[1] а. е. м.
Дефект массы 3019,893(4)[1] кэВ
Удельная энергия связи (на нуклон) 7520,3198(4)[1] кэВ
Период полураспада 5,70(3)⋅103[2] лет
Продукты распада 14N
Спин и чётность ядра 0+[2]
Канал распада Энергия распада
β 0,1564765(37)[1] МэВ
Таблица нуклидов
Логотип Викисклада Медиафайлы на Викискладе

Углеро́д-14 (14C, используются также названия радиоуглеро́д, радиокарбо́н и сокращение C-14) — радиоактивный

атомным номером 6 и массовым числом
14.

Открытие

Углерод-14 является одним из природных радиоактивных изотопов. Первые указания на его существование были получены в 1936 году, когда британские физики У. Бёрчем и М. Голдхабер облучали медленными нейтронами ядра азота-14 в фотоэмульсии и обнаружили реакцию 14N(n,p)14C[3]. В 1940 году углерод-14 смогли выделить американские физики Мартин Дэвид Кеймен и Самуэл Рубен, облучавшие на циклотроне графитовую мишень дейтронами; 14C образовывался в реакции 13C(d,p)14C[4]. Его период полураспада был установлен позже (Мартин Кеймен в своих первых экспериментах получил 2700 и 4000 лет[5], Уиллард Либби в 1951 году принял период полураспада в 5568 ± 30 лет). Современное рекомендованное значение периода полураспада 5,70 ± 0,03 тыс. лет приведено в базе данных Nubase-2020[2] и основано на пяти экспериментах по измерению удельной активности, проведённых в 1960-х годах[6].

Образование

Углерод-14 образуется в верхних слоях тропосферы и стратосфере в результате поглощения атомами азота-14 тепловых нейтронов, которые в свою очередь являются результатом взаимодействия космических лучей и вещества атмосферы:

Сечение процесса 14N(n,p)14C довольно высоко (1,83 барн). Оно в 25 раз выше, чем сечение конкурирующего процесса — радиативного
захвата теплового нейтрона 14N(n,γ)15N. Существуют и другие реакции, создающие в атмосфере космогенный углерод-14, в частности 13C(n,γ)14C и 17O(n,α)14C. Однако их скорость значительно ниже ввиду меньшей распространённости исходных нуклидов и меньших сечений реакции.

С наибольшей скоростью углерод-14 образуется на высоте от 9 до 15 км на высоких геомагнитных широтах, однако затем он равномерно распределяется по всей атмосфере. В секунду над каждым квадратным метром земной поверхности в среднем образуется от 16 400 до 18 800 атомов углерода-14[7][8], хотя скорость образования может колебаться в зависимости от солнечной активности и других факторов. Обнаружены резкие и короткие увеличения скорости образования 14C (события Мияке), предположительно связанные с очень мощной солнечной вспышкой или близким гамма-всплеском, например событие в 774 году н. э., когда в атмосфере одномоментно возникло в три с лишним раза больше радиоуглерода, чем в среднем образуется за год.

Ещё один природный канал образования углерода-14 — происходящий с очень малой вероятностью

221Fr, 221Ra, 222Ra и 225Ac). Скорость образования радиогенного углерода-14 по этому каналу пренебрежимо мала по сравнению со скоростью образования космогенного углерода-14[9]
.

При испытаниях ядерного и особенно термоядерного оружия в атмосфере в 1940—1960-х годах углерод-14 интенсивно образовывался в результате облучения атмосферного азота тепловыми нейтронами от ядерных и термоядерных взрывов. В результате содержание углерода-14 в атмосфере сильно возросло (так называемый «бомбовый пик», см. рис.), однако впоследствии стало постепенно возвращаться к прежним значениям ввиду ухода в океан и прочие резервуары. Другой техногенный процесс, повлиявший на среднее отношение [14C]/[12C] в атмосфере, действует в направлении уменьшения этой величины: с началом индустриализации (XVIII век) значительно увеличилось сжигание угля, нефти и природного газа, то есть выброс в атмосферу древнего ископаемого углерода, не содержащего 14C (так называемый эффект Зюсса[англ.])[10].

Ядерные реакторы, использующие воду в активной зоне, также являются источником техногенного загрязнения углеродом-14[11][12], также как и реакторы с графитовым замедлителем[13].

Общее количество углерода-14 на Земле оценивается в 8500 пета

беккерелей (около 50 тонн), в том числе в атмосфере 140 ПБк (840 кг). Количество углерода-14, попавшего в атмосферу и другие среды в результате ядерных испытаний, оценивается в 220 ПБк (1,3 тонны)[14]
.

Распад

Углерод-14 претерпевает β-распад, в результате распада образуется стабильный нуклид 14N (выделяемая энергия 156,476(4) кэВ[1]):

Скорость распада не зависит от химических и физических свойств окружения. Грамм атмосферного углерода содержит около 1,5×10−12 г углерода-14 и излучает около 0,6 бета-частиц в секунду за счёт распада этого изотопа. С этой же скоростью углерод-14 распадается и в человеческом теле; каждую секунду в организме человека происходит несколько тысяч распадов. Ввиду малой энергии образующихся бета-частиц мощность

Бк на 1 кг углерода, близко к значениям до бомбового пика (226 Бк/кг C; 1950)[16]
.

Биологическая роль

Углерод-14 является вторым (после

кБк
.

Использование

Радиоизотопное датирование

Углерод-14 постоянно образуется в атмосфере из

углекислый газ, который нужен растениям в процессе фотосинтеза. Люди и различные животные затем потребляют растения и изготовленные из них продукты в пищу, усваивая таким образом и углерод-14. При этом соотношения концентраций изотопов углерода [14C]: [13C]: [12C] сохраняются практически такими же, как в атмосфере; изотопное фракционирование в биохимических реакциях изменяет эти соотношения лишь на несколько промилле, что может быть учтено[21]
.

В умершем живом организме углерод-14 постепенно распадается, а стабильные изотопы углерода остаются без изменений. То есть соотношение изотопов изменяется с течением времени. Это позволило использовать данный изотоп для

установления возраста методом радиоизотопного датирования при датировании биоматериалов и некоторых неорганических образцов возраста до 60 000 лет. Наиболее часто используется в археологии, в ледниковой и постледниковой геологии, а также в физике атмосферы, геоморфологии, гляциологии, гидрологии и почвоведении, в физике космических лучей, физике Солнца и в биологии, не только для датировок, но и как трассёр различных природных процессов[21]
.

В медицине

Используется для определения заражения желудочно-кишечного тракта Helicobacter pylori. Пациенту дают препарат мочевины с содержанием 14C. В случае инфекции H.pylori бактериальный фермент уреазы разрушает мочевину в аммиак и радиоактивно меченый углекислый газ, который может быть обнаружен в дыхании пациента[22][23]. Сегодня тест на основе меченых атомов 14C стараются заменять на тест со стабильным 13C, который не связан с радиационными рисками.

В России

.

Радиоизотопные источники энергии

Существует концепция использования углерода-14 в качестве радиоизотопного источника энергии. В нём содержится

бета-излучения и дополнительное такое же покрытие с нормальным углеродом для создания необходимого полупроводникового перехода и инкапсуляции углерода-14. Такая батарея будет вырабатывать небольшое количество электроэнергии в течение тысяч лет[25]
.

См. также

Примечания

  1. .
  2. 12 июня 2018 года.
  3. .
  4. Martin David Kamen. «Radiant science, dark politics: a memoir of the nuclear age».
  5. Bé M. M., Chechev V. P. 14C — Comments on evaluation of decay data. www.nucleide.org. LNHB. Дата обращения: 8 июня 2018. Архивировано 22 ноября 2016 года.
  6. .
  7. .
  8. Baum E. M. et al. (2002). Nuclides and Isotopes: Chart of the nuclides. 16th ed. Knolls Atomic Power Laboratory (Lockheed Martin).
  9. 2 июня 2017 года.
  10. EPRI | Impact of Nuclear Power Plant Operations on Carbon-14 Generation, Chemical Forms, and Release. www.epri.com. Дата обращения: 7 июля 2016. Архивировано из оригинала 18 августа 2016 года.
  11. EPRI | Carbon-14 Dose Calculation Methods at Nuclear Power Plants. www.epri.com. Дата обращения: 7 июля 2016. Архивировано из оригинала 18 августа 2016 года.
  12. James Conca. Radioactive Diamond Batteries: Making Good Use Of Nuclear Waste (англ.). Forbes. Дата обращения: 26 сентября 2020. Архивировано 29 октября 2020 года.
  13. Choppin G. R., Liljenzin J. O., Rydberg J. Radiochemistry and Nuclear Chemistry (англ.). — 3rd Ed.. — Butterworth-Heinemann, 2002. — ISBN 978-0-7506-7463-8.
  14. Radioactivity in the Natural Environment Архивная копия от 11 июля 2007 на Wayback Machine. In: NCRP Report No. 93. Ionizing Radiation Exposure of the Population of the United States (англ.). — National Council on Radiation Protection and Measurements, 1987.
  15. Carbon-14 and the environment. Institute for Radiological Protection and Nuclear Safety. Дата обращения: 4 мая 2017. Архивировано 18 апреля 2015 года.
  16. Леенсон И. А. Радиоактивность внутри нас // Химия и жизнь. — 2009. — № 7. Архивировано 16 ноября 2020 года.
  17. Are Our Bodies Radioactive? Архивная копия от 13 июня 2015 на Wayback Machine / Health Physics Society, 2014: «...The body content of 14C for a 70-kg person would be about 3.08 kBq».
  18. Аликбаева Л. А., Афонин М. А. и др. Новый справочник химика и технолога: Радиоактивные вещества. — СПб.: Профессионал, 2004. — С. 266. — 1004 с.
  19. Ильин Л. А., Кириллов В. Ф., Коренков И. П. Радиационная гигиена : учеб. для вузов. — М.: ГЭОТАР-Медиа, 2010. — 384 с.
  20. 1 2 Левченко В. Радиоуглерод и абсолютная хронология: записки на тему. — «Русский Переплёт», 18 декабря 2001.
  21. Причины, процедура и подготовка к дыхательному тесту с С мочевиной. Дата обращения: 14 октября 2017. Архивировано 15 октября 2017 года.
  22. Society of Nuclear Medicine Procedure Guideline for C-14 Urea Breath Test (PDF). snm.org (23 июня 2001). Дата обращения: 4 июля 2007. Архивировано 26 сентября 2007 года.
  23. Обнинский филиал НИФХИ им. Л. Я. Карпова отмечает 50 лет со дня пуска реактора. Дата обращения: 14 октября 2017. Архивировано 15 октября 2017 года.
  24. University of Bristol. November: diamond-power | News and features | University of Bristol (англ.). www.bristol.ac.uk. Дата обращения: 26 сентября 2020. Архивировано 20 ноября 2022 года.