Цифровая звукозапись

Материал из Википедии — свободной энциклопедии
Схема прохождения звука от источника через микрофон, АЦП, процессор, ЦАП, громкоговоритель и снова в звук

Цифрово́й звук — результат

цифровой аудиоформат
.

Простейший метод преобразования,

АЦП
) через равные промежутки времени.

Разновидностью ИКМ является дельта-модуляция, где в каждый момент отсчёта сигнал сравнивается с пилообразным напряжением на каждом шаге дискретизации.

Сигма-дельта модуляция' — способ представления сигнала на основе принципа избыточной дискретизации и формирования шума квантования, позволяет снизить уровень шума
.

Современные методы используют более сложные

алгоритмы преобразования. Помимо представления звуковых колебаний в цифровом виде, применяется также создание специальных команд для автоматического воспроизведения на различных электронных музыкальных инструментах. Ярчайшим примером такой технологии является MIDI
.

Преимущества битового кода используются при передаче кодированного сигнала на расстояние, шифровании сигнала, цифровой подписи сигнала, восстановлении потерь, вызванных помехами при передаче, а также в прочих приложениях.

Цифровая звукозапись — технология преобразования аналогового звука в цифровой с целью сохранения его на физическом носителе для возможности последующего воспроизведения записанного сигнала.

Представление аудиоданных в цифровом виде позволяет очень эффективно изменять исходный материал при помощи специальных устройств или компьютерных программ — звуковых редакторов, что нашло широкое применение в промышленности, медиа-индустрии и быту.

Для воспроизведения цифрового звука применяют специальное оборудование, например

аудиоплеером или медиаплеером
.

История

Принцип цифровой звукозаписи методом периодической дискретизации и квантования сигнала

Преобразование аналогового сигнала в цифровой в АЦП и обратное восстановление его в ЦАП
Структурная схема цифровой звукозаписи и воспроизведения

Принцип цифрового представления колебаний звукозаписи достаточно прост:

Принцип действия АЦП тоже достаточно прост: аналоговый сигнал, полученный от микрофонов и электро-музыкальных инструментов, преобразовывается в цифровой. Это преобразование включает в себя следующие операции:

  1. Ограничение полосы частот производится при помощи фильтра нижних частот для подавления спектральных компонент, частота которых превышает половину частоты дискретизации.
  2. устройства выборки-хранения
    .
  3. Квантование
    по уровню представляет собой замену величины отсчета сигнала ближайшим значением из набора фиксированных величин — уровней квантования.
  4. Кодирование или оцифровку, в результате которого значение каждого квантованного отсчета представляется в виде числа, соответствующего порядковому номеру уровня квантования.

Делается это следующим образом: непрерывный аналоговый сигнал «режется» на участки, с частотой дискретизации, получается цифровой дискретный сигнал, который проходит процесс квантования с определенной разрядностью, а затем кодируется, то есть заменяется последовательностью кодовых символов. Для качественной записи звука в

полосе частот
20-20 000 Гц применяется минимальная стандартная частота дискретизации от 44,1 кГц и выше (в настоящее время появились АЦП и ЦАП c частотой дискретизации 192,3 и даже 384,6 кГц). Для получения довольно качественной записи достаточно разрядности 16 бит, однако для расширения динамического диапазона и повышения качества звукозаписи используется разрядность 24 (реже 32) бита.

Помехоустойчивое и канальное кодирование

Помехоустойчивое кодирование позволяет при воспроизведении сигнала выявить и устранить (или снизить частоту их появления) ошибки чтения с носителя. Для этого в процессе записи к отсчётам, полученным на выходе АЦП, добавляется искусственная избыточность (контрольные биты), которая впоследствии помогает восстановить повреждённый отсчёт. В устройствах записи звука обычно используется комбинация из двух или трех помехоустойчивых кодов. Если же выбранный уровень избыточности кодирования не позволяет восстановить правильное значение отсчёта, то производится его замена с помощью интерполяции
, чтобы исключить появление скачкообразного изменения уровня сигнала (щелчка).

Для лучшей защиты от пакетных ошибок, вызванных повреждениями носителя информации (царапины на компакт-диске, загибы магнитной ленты) также применяется перемежение.

К полезному сигналу также добавляются вспомогательные данные, которые облегчают последующее декодирование. Это могут быть сигналы

временного кода
, служебные сигналы, сигналы синхронизации.

Канальное кодирование служит для согласования цифровых сигналов с параметрами канала передачи (записи/воспроизведения). Например, при записи цифровых сигналов на магнитный носитель необходимо исключить появление в токе записи постоянной составляющей и низкочастотных составляющих спектра (возникающих при появлении длинных последовательностей нулей или единиц). Для этого используются таблицы преобразования, по которым производится замена слов из m бит данных на слова из n канальных бит, причем всегда n > m. В устройствах воспроизведения цифровых сигналов канальный декодер выделяет из общего потока данных тактовые сигналы и выполняет обратное преобразование канальных n-битных слов в m-битные слова данных. После коррекции ошибок сигнал поступает в ЦАП.

Принцип действия ЦАП

Сигнал с ЦАП без интерполяции на фоне идеального сигнала.

Цифровой сигнал, полученный с декодера, преобразовывается в аналоговый. Это преобразование происходит следующим образом:

  1. Декодер ЦАП преобразует последовательность чисел в дискретный квантованный сигнал
  2. Путём сглаживания во временной области из дискретных отсчетов вырабатывается непрерывный во времени сигнал
  3. Окончательное восстановление сигнала производится путём подавления побочных спектров в аналоговом фильтре нижних частот

Методы цифровой звукозаписи

По принципу записи выделяют следующие методы:

На цифровых носителях и в персональных компьютерах для хранения звука (музыки, голоса и т. п.) применяются различные

форматы, позволяющие выбрать приемлемое соотношение сжатия
, качества звука и объёма данных.

Популярные форматы файлов для персональных компьютеров и соответствующих устройств:

Параметры, влияющие на качество цифровой звукозаписи

Основными параметрами, влияющими на качество цифровой звукозаписи, являются:

Также немаловажными остаются параметры аналогового тракта цифровых устройств звукозаписи и звуковоспроизведения:

Техника цифровой звукозаписи

Запись цифрового звука в настоящее время осуществляется на студиях звукозаписи, под управлением персональных компьютеров и другой дорогостоящей и качественной аппаратуры. Также довольно широко развито понятие «домашней студии», в которой применяется профессиональное и полупрофессиональное звукозаписывающее оборудование, позволяющее создавать качественные записи в домашних условиях.

Применяются звуковые карты в составе компьютеров, которые производят обработку в своих АЦП и ЦАП — чаще всего в 24 битах и 96 кГц, дальнейшее повышение битности и частоты дискретизации, практически не увеличивает качества записи.

Существует целый класс

звуковых редакторов
, которые позволяют работать со звуком:

  • записывать входящий звуковой поток
  • создавать (генерировать) звук
  • изменять существующую запись (добавлять семплы, изменять тембр, скорость звука, вырезать части и т. п.)
  • перезаписывать из одного
    формата
    в другой
  • конвертировать разные аудиокодеки

Некоторые простые программы, позволяют осуществлять только конвертацию форматов и кодеков.

Некоторые виды цифрового звука в сравнении

Название формата Разрядность, бит Частота дискретизации, кГц Число каналов Величина потока данных с диска, кбит/с Степень сжатия/упаковки
CD 16 44,1 2 1411,2 1:1 без потерь
Dolby Digital (AC3) 16-24 48 6 до 640 ~12:1 с потерями
DTS
20-24 48; 96 до 8 до 1536 ~3:1 с потерями
DVD-Audio 16; 20; 24 44,1; 48; 88,2; 96 6 6912 2:1 без потерь
DVD-Audio 16; 20; 24 176,4; 192 2 4608 2:1 без потерь
MP3
плавающий до 48 2 до 320 ~11:1 с потерями
AAC
плавающий до 96 до 48 до 529 с потерями
AAC+ (SBR) плавающий до 48 2 до 320 с потерями
Ogg Vorbis
до 32 до 192 до 255 до 1000 с потерями
WMA
до 24 до 96 до 8 до 768 2:1, есть версия без потерь

См. также

Примечания

  1. H. Nyquist, "Certain topics in telegraph transmission theory, " Trans. AIEE, vol. 47, pp. 617—644, Apr. 1928
  2. Котельников В. А. О пропускной способности «эфира» и проволоки в электросвязи // Успехи физических наук : Журнал. — 2006. — № 7. — С. 762-770. Архивировано 23 июня 2013 года.
  3. Robertson, David. Alec Reeves 1902—1971 Privateline.com: Telephone History Архивировано 11 мая 2014 года. (англ.)
  4. Клод Шеннон — Математическая теория связи. Дата обращения: 28 марта 2011. Архивировано 8 февраля 2012 года.
  5. C. E. Shannon. Communication in the presence of noise. Proc. Institute of Radio Engineers. Vol. 37. No. 1. P. 10—21. Jan. 1949.
  6. 1 2 3 4 5 6 7 8 9 The compact disc: a handbook of theory and use Авторы: Ken C. Pohlmann  (англ.)
  7. Billboard 22 авг 1981 — Japan’s denon label 10-year digital veteran (англ.)

Литература

  • Шкритек П. Справочное руководство по звуковой схемотехнике: Пер. с нем.-М. Мир, 1991.-446 с.: ил.
  • Золотухин И.П., Изюмов А.А., Райзман М.М. Цифровые звуковые магнитофоны. — Томск: «Радио и связь», 1990. — 160 с. — ISBN 5-256-00559-6.

Ссылки