89°59′24″ ю. ш. 63°27′11″ з. д.HGЯO

IceCube

Материал из Википедии — свободной энциклопедии
Буровая вышка и барабан со шлангом для бурения скважин «Ледяного кубика», декабрь 2009 г.

IceCube (

гамма-кванты
и т. п.). Из всех известных частиц только нейтрино могут пройти Землю насквозь. Таким образом, хотя IceCube расположен на Южном полюсе, он обнаруживает нейтрино, приходящие с северной полусферы неба.

Название детектора связано с тем, что общий объём использующегося в нём черенковского радиатора (льда) в проектной конфигурации достигает 1 кубического километра.

Статус постройки

Строительство нейтринного телескопа было начато в 2005 году — тогда под лёд была погружена первая «нить» с оптическими детекторами. В следующем году количество нитей достигло 9 штук, что сделало IceCube крупнейшим нейтринным телескопом в мире. В течение следующих двух летних сезонов были установлены 13 и затем 18 нитей с детекторами. Строительство обсерватории завершено в 2010 году, когда последние из 5160 предусмотренных проектом оптических модулей заняли своё место в толще антарктического льда[1]. Однако набор данных начался ещё раньше. Первое нейтринное событие было зарегистрировано 29 января 2006 года.

Задачи

Один из цифровых оптических модулей, который в настоящее время находится в скважине № 85.

Детектирование нейтрино

Хотя проектный темп регистрации нейтрино детектором невелик, угловое разрешение достаточно хорошее. В течение нескольких лет ожидается построение карты потока высокоэнергичных нейтрино из северной небесной полусферы.

Источники гамма-излучения

Столкновение

гамма-кванта. Потенциально поток нейтрино может совпадать с потоком гамма-квантов для таких источников, как гамма-всплески и остатки сверхновых. Данные, полученные с помощью обсерватории IceCube, объединённые с данными таких детекторов высокоэнергичных гамма-квантов, как HESS и MAGIC
, помогут лучше понять природу этих явлений.

Теория струн

Учитывая мощность и местоположение обсерватории, учёные намерены провести серию экспериментов, призванных подтвердить либо опровергнуть некоторые утверждения

стерильного нейтрино
.

Результаты

22 сентября

электромагнитный, гравитационно-волновой и теперь нейтринный — помогает нам в ещё более полном объёме понять Вселенную, а также важные процессы в самых мощных объектах на небе»[3]
.

В 2020—2021 гг. российские исследователи на основе данных IceCube обосновали генерацию нейтрино с энергиями от 1 ТэВ

радиоизлучения блазаров[4]. Идея проверить именно радиоизлучение квазаров по направлениям прихода нейтрино, а не проверявшееся до этого гамма-излучение принадлежит Ю. Ю. Ковалёву[5]
.

Примечания

  1. «Завершено строительство нейтринной обсерватории IceCube». Дата обращения: 21 декабря 2010. Архивировано из оригинала 22 декабря 2015 года.
  2. Nplus1.ru (12 июля 2018). Дата обращения: 12 июля 2018. Архивировано
    13 июля 2018 года.
  3. Впервые зарегистрированы нейтрино внегалактического происхождения. Индикатор.ру (12 июля 2018). Дата обращения: 12 июля 2018. Архивировано 13 июля 2018 года.
  4. Plavin A. V., Kovalev Y. Y., Kovalev Yu. A., Troitsky S. V. Directional Association of TeV to PeV Astrophysical Neutrinos with Radio Blazars (англ.) // Astrophysical Journal. — 2021. — Vol. 908, iss. 2.
  5. Алексей Понятов. Космические нейтрино высоких энергий рождаются квазарами // Наука и жизнь. — 2021. — № 4. — С. 16.

Ссылки