Andrea C. Ferrari

Source: Wikipedia, the free encyclopedia.
Andrea Ferrari
Born
Andrea Carlo Ferrari

November 1972 (age 51)
NationalityItalian
Alma materPolytechnic University of Milan
Scientific career
FieldsGraphene, 2D materials, carbon-based materials, photonics, optoelectronics.
InstitutionsUniversity of Cambridge
ThesisNanoscale properties of amorphous carbon (2001)
Websitehttp://www-g.eng.cam.ac.uk/nms/home.html

Andrea Carlo Ferrari (born 1972[1][2][3]) is a professor of nanotechnology at the University of Cambridge.

Academic career

Ferrari earned a PhD in

Director of the Cambridge Graphene Centre at the University of Cambridge,[6] and the EPSRC Doctoral Training Centre in Graphene Technology.[7] Prof. Ferrari is the Science and Technology Officer[8] and the Chair of the Management Panel of the Graphene Flagship,[9] one of the biggest research initiatives ever funded by the European Commission.[10]

Research

Ferrari is a leading researcher in graphene and related materials, having pioneered bulk production,[11][12][13] mass scale identification by optical[14] and spectroscopic means,[15][16][17] implementation in composites,[18] printed and flexible electronics,[19] lasers, modulators,[20] detectors,[21] and many others. He also gave seminal contributions to the growth, characterization and modelling of diamond and diamond-like carbon,[22] amorphous, disordered and nanostructured carbons,[23] carbon nanotubes,[24] and nanowires.[25] He investigated their applications for coating, optoelectronics and sensing.[26] He worked on non-linear optical properties of carbon nanotubes for photonic devices,[27] and on layered materials for single photon emission and quantum technology applications.[28]

Awards

Ferrari is a Fellow of the

Optical Society, the European Academy of Sciences, the Royal Academy of Engineering,[29] and the Royal Society of Chemistry. He is also a Member of Academia Europaea.[30] Among others, he has received the following awards:[6]

Ferrari has also received 4 European Research Council grants.[31]

Ferrari's papers have been cited over 140,000 times, yielding a h-index of 126.[32] He has been included on a number of highly cited researchers lists including the list of scientists with h-index beyond 100.[33]

References

  1. ^ "Andrea FERRARI perso". Companies House. Retrieved 2021-12-07.
  2. ^ "Andrea FERRARI perso". Companies House. Retrieved 2021-12-07.
  3. ^ "Andrea FERRARI perso". Companies House. Retrieved 2021-12-07.
  4. ^ "EThOS - Nanoscale properties of amorphous carbon". EThOS. Retrieved 2022-04-02..
  5. ^ "iDiscover - Nanoscale properties of amorphous carbon". Retrieved 2022-04-04.
  6. ^ a b "Andrea C. Ferrari". 6 November 2013. Retrieved 19 April 2019.
  7. ^ "EPSRC Centre for Doctoral Training in Graphene Technology". Retrieved 19 April 2019.
  8. ^ "Director and management". Archived from the original on 12 September 2016. Retrieved 19 April 2019.
  9. ^ "Management Panel". Retrieved 19 April 2019.
  10. ^ Johnson, Dexter. "Europe Invests €1 Billion to Become "Graphene Valley"". Retrieved 19 April 2019.
  11. S2CID 205443620
    . Retrieved 11 November 2020.
  12. ^ Bonaccorso F, Lombardo A, Hasan T, Sun Z, Colombo L, Ferrari AC (2012). "Production and processing of graphene and 2d crystals". Materials Today. 15 (12): 564–589. .
  13. ^ Backes C, et al. (2020). "Production and processing of graphene and related materials". 2D Materials. 7 (2): 022001. .
  14. ^ Casiraghi C, Hartschuh A, Lidorikis E, Qian H, Harutyunyan H, Gokus T, Novoselov KS, Ferrari AC (2007). "Rayleigh Imaging of Graphene and Graphene Layers". Nano Letters. 7 (9): 2711–2717.
    S2CID 11461677
    . Retrieved 11 November 2020.
  15. ^ Ferrari AC, Robertson J (2000). "Interpretation of Raman Spectra of disordered and amorphous carbon". Physical Review B. 61 (20): 14095–14107. . Retrieved 11 November 2020.
  16. ^ Casiraghi C, Ferrari AC, Robertson J (2005). "Raman spectroscopy of hydrogenated amorphous carbon". Physical Review B. 72 (8): 085401. . Retrieved 11 November 2020.
  17. ^ Ferrari AC, Robertson J (2001). "Resonant Raman spectroscopy of disordered, amorphous and diamond-like carbon". Physical Review B. 64 (7): 075414. . Retrieved 11 November 2020.
  18. ^ Karagiannidis PG, Hodge SA, Lombardi L, Tomarchio F, Decorde N, Milana S, Goykhman I, Su Y, Mesite SV, Johnstone DN, Leary RK, Midgley PA, Pugno NM, Torrisi F, Ferrari AC (2017). "Microfluidization of graphite and formulation of graphene-based conductive inks". ACS Nano. 11 (3): 2742–2755.
    PMID 28102670
    .
  19. ^ Ferrari AC, et al. (2015). "Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems". Nanoscale. 7 (11): 4598–4810.
    PMID 25707682
    .
  20. ^ Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010). "Graphene Photonics and Optoelectronics". Nature Photonics. 4 (9): 611–622.
    S2CID 15426689
    . Retrieved 11 November 2020.
  21. ^ Echtermeyer J, Britnell L, Jasnos PK, Lombardo A, Gorbachev RV, Grigorenko AN, Geim AK, Ferrari AC, Novoselov KS (2011). "Strong plasmonic enhancement of photovoltage in graphene". Nature Communications. 2: 458.
    PMID 21878912
    . Retrieved 11 November 2020.
  22. . Retrieved 11 November 2020.
  23. . Retrieved 11 November 2020.
  24. . Retrieved 11 November 2020.
  25. . Retrieved 11 November 2020.
  26. .
  27. . Retrieved 11 November 2020.
  28. .
  29. ^ "Academy celebrates first new Fellows elected under Fit for the Future diversity initiative". The Royal Academy of Engineering. 22 September 2021. Retrieved 27 September 2021.
  30. ^ "Academy of Europe: Ferrari Andrea". www.ae-info.org. Retrieved 2021-09-27.
  31. ^ "ERC FUNDED PROJECTS". Retrieved 19 April 2019.
  32. ^ "Andrea C. Ferrari".
  33. ^ https://www.webometrics.info/en/hlargerthan100. {{cite web}}: Missing or empty |title= (help)

External links