Arakelov theory
In mathematics, Arakelov theory (or Arakelov geometry) is an approach to Diophantine geometry, named for Suren Arakelov. It is used to study Diophantine equations in higher dimensions.
Background
The main motivation behind Arakelov geometry is that there is a correspondence between prime ideals and finite places , but there also exists a place at infinity , given by the Archimedean valuation, which doesn't have a corresponding prime ideal. Arakelov geometry gives a technique for compactifying into a complete space which has a prime lying at infinity. Arakelov's original construction studies one such theory, where a definition of divisors is constructed for a scheme of relative dimension 1 over such that it extends to a Riemann surface for every valuation at infinity. In addition, he equips these Riemann surfaces with
Note that other techniques exist for constructing a complete space extending , which is the basis of F1 geometry.
Original definition of divisors
Let be a field, its ring of integers, and a genus curve over with a non-singular model , called an arithmetic surface. Also, let be an inclusion of fields (which is supposed to represent a place at infinity). Also, let be the associated Riemann surface from the base change to . Using this data, one can define a c-divisor as a formal linear combination where is an irreducible closed subset of of codimension 1, , and , and the sum represents the sum over every real embedding of and over one embedding for each pair of complex embeddings . The set of c-divisors forms a group .
Results
Arakelov (1974, 1975) defined an intersection theory on the arithmetic surfaces attached to smooth projective curves over number fields, with the aim of proving certain results, known in the case of function fields, in the case of number fields.
Arakelov theory was used by
's generalization of the Mordell conjecture.Pierre Deligne (1987) developed a more general framework to define the intersection pairing defined on an arithmetic surface over the spectrum of a ring of integers by Arakelov. Shou-Wu Zhang (1992) developed a theory of positive line bundles and proved a Nakai–Moishezon type theorem for arithmetic surfaces. Further developments in the theory of positive line bundles by Zhang (1993, 1995a, 1995b) and Lucien Szpiro, Emmanuel Ullmo, and Zhang (1997) culminated in a proof of the Bogomolov conjecture by Ullmo (1998) and Zhang (1998).[1]
Arakelov's theory was generalized by Henri Gillet and Christophe Soulé to higher dimensions. That is, Gillet and Soulé defined an intersection pairing on an arithmetic variety. One of the main results of Gillet and Soulé is the arithmetic Riemann–Roch theorem of Gillet & Soulé (1992), an extension of the Grothendieck–Riemann–Roch theorem to arithmetic varieties. For this one defines arithmetic
Arakelov's intersection theory for arithmetic surfaces was developed further by Jean-Benoît Bost (1999). The theory of Bost is based on the use of Green functions which, up to logarithmic singularities, belong to the Sobolev space . In this context, Bost obtains an arithmetic Hodge index theorem and uses this to obtain Lefschetz theorems for arithmetic surfaces.
Arithmetic Chow groups
An arithmetic cycle of codimension p is a pair (Z, g) where Z ∈ Zp(X) is a p-cycle on X and g is a Green current for Z, a higher-dimensional generalization of a Green function. The arithmetic Chow group of codimension p is the quotient of this group by the subgroup generated by certain "trivial" cycles.[2]
The arithmetic Riemann–Roch theorem
The usual
- X and Y are regular projective arithmetic schemes.
- f is a smooth proper map from X to Y
- E is an arithmetic vector bundle over X.
- is the arithmetic Chern character.
- TX/Y is the relative tangent bundle
- is the arithmetic Todd class
- is
- R(X) is the additive characteristic class associated to the formal power series
See also
- Hodge–Arakelov theory
- Hodge theory
- P-adic Hodge theory
- Adelic group
Notes
- ^ Leong, Y. K. (July–December 2018). "Shou-Wu Zhang: Number Theory and Arithmetic Algebraic Geometry" (PDF). Imprints. No. 32. The Institute for Mathematical Sciences, National University of Singapore. pp. 32–36. Retrieved 5 May 2019.
- ^ Manin & Panchishkin (2008) pp.400–401
References
- Zbl 0355.14002
- Zbl 0351.14003
- Bost, Jean-Benoît (1999), "Potential theory and Lefschetz theorems for arithmetic surfaces" (PDF), Zbl 0931.14014
- MR 0902592
- JSTOR 2007043
- JSTOR 2944319
- MR 1158661
- Kawaguchi, Shu; Moriwaki, Atsushi; Yamaki, Kazuhiko (2002), "Introduction to Arakelov geometry", Algebraic geometry in East Asia (Kyoto, 2001), River Edge, NJ: World Sci. Publ., pp. 1–74, MR 2030448
- Zbl 0667.14001
- Zbl 1079.11002.
- Soulé, Christophe (2001) [1994], "Arakelov theory", Encyclopedia of Mathematics, EMS Press
- MR 1208731
- S2CID 119668209.
- Zbl 0934.14013
- JSTOR 2944318
- doi:10.2307/2946601.
- S2CID 120229374.
- Zhang, Shou-Wu (1995a), "Small points and adelic metrics", Journal of Algebraic Geometry, 8 (1): 281–300.
- .
- Zhang, Shou-Wu (1996), "Heights and reductions of semi-stable varieties", Compositio Mathematica, 104 (1): 77–105.
- JSTOR 120986.