Bimetric gravity
Bimetric gravity or bigravity refers to two different classes of theories. The first class of theories relies on modified mathematical theories of gravity (or gravitation) in which two metric tensors are used instead of one.[1][2] The second metric may be introduced at high energies, with the implication that the speed of light could be energy-dependent, enabling models with a variable speed of light.
If the two metrics are dynamical and interact, a first possibility implies two
On the contrary, the second class of bimetric gravity theories does not rely on massive gravitons and does not modify
Rosen's bigravity (1940 to 1989)
In
In 1940, Rosen[1][2] proposed that at each point of space-time, there is a Euclidean metric tensor in addition to the Riemannian metric tensor . Thus at each point of space-time there are two metrics:
The first metric tensor, , describes the geometry of space-time and thus the gravitational field. The second metric tensor, , refers to the flat space-time and describes the inertial forces. The Christoffel symbols formed from and are denoted by and respectively.
Since the difference of two connections is a tensor, one can define the tensor field given by:
1 |
Two kinds of covariant differentiation then arise: -differentiation based on (denoted by a semicolon, e.g. ), and covariant differentiation based on (denoted by a slash, e.g. ). Ordinary partial derivatives are represented by a comma (e.g. ). Let and be the Riemann curvature tensors calculated from and , respectively. In the above approach the curvature tensor is zero, since is the flat space-time metric.
A straightforward calculation yields the Riemann curvature tensor
Each term on the right hand side is a tensor. It is seen that from GR one can go to the new formulation just by replacing {:} by and ordinary differentiation by covariant -differentiation, by , integration measure by , where , and . Having once introduced into the theory, one has a great number of new tensors and scalars at one's disposal. One can set up other field equations other than Einstein's. It is possible that some of these will be more satisfactory for the description of nature.
The geodesic equation in bimetric relativity (BR) takes the form
2 |
It is seen from equations (1) and (2) that can be regarded as describing the inertial field because it vanishes by a suitable coordinate transformation.
Being the quantity a tensor, it is independent of any coordinate system and hence may be regarded as describing the permanent gravitational field.
Rosen (1973) has found BR satisfying the covariance and equivalence principle. In 1966, Rosen showed that the introduction of the space metric into the framework of general relativity not only enables one to get the energy momentum density tensor of the gravitational field, but also enables one to obtain this tensor from a variational principle. The field equations of BR derived from the variational principle are
3 |
where
or
with
- ,
and is the energy-momentum tensor.
The variational principle also leads to the relation
- .
Hence from (3)
- ,
which implies that in a BR, a test particle in a gravitational field moves on a geodesic with respect to
Rosen continued improving his bimetric gravity theory with additional publications in 1978[18] and 1980,[19] in which he made an attempt "to remove singularities arising in general relativity by modifying it so as to take into account the existence of a fundamental rest frame in the universe." In 1985[20] Rosen tried again to remove singularities and pseudo-tensors from General Relativity. Twice in 1989 with publications in March[21] and November[22] Rosen further developed his concept of elementary particles in a bimetric field of General Relativity.
It is found that the BR and GR theories differ in the following cases:
- propagation of electromagnetic waves
- the external field of a high density star
- the behaviour of intense gravitational waves propagating through a strong static gravitational field.
The predictions of gravitational radiation in Rosen's theory have been shown since 1992 to be in conflict with observations of the
Massive bigravity
Since 2010 there has been renewed interest in bigravity after the development by Claudia de Rham, Gregory Gabadadze, and Andrew Tolley (dRGT) of a healthy theory of massive gravity.[23] Massive gravity is a bimetric theory in the sense that nontrivial interaction terms for the metric can only be written down with the help of a second metric, as the only nonderivative term that can be written using one metric is a cosmological constant. In the dRGT theory, a nondynamical "reference metric" is introduced, and the interaction terms are built out of the
In dRGT massive gravity, the reference metric must be specified by hand. One can give the reference metric an Einstein–Hilbert term, in which case is not chosen but instead evolves dynamically in response to and possibly matter. This massive bigravity was introduced by Fawad Hassan and Rachel Rosen as an extension of dRGT massive gravity.[3][24]
The dRGT theory is crucial to developing a theory with two dynamical metrics because general bimetric theories are plagued by the Boulware–Deser ghost, a possible sixth polarization for a massive graviton.[25] The dRGT potential is constructed specifically to render this ghost nondynamical, and as long as the kinetic term for the second metric is of the Einstein–Hilbert form, the resulting theory remains ghost-free.[3]
The action for the ghost-free massive bigravity is given by[26]
As in standard general relativity, the metric has an Einstein–Hilbert kinetic term proportional to the
The interaction potential is built out of the
The can be written directly in terms of as
where brackets indicate a trace, . It is the particular antisymmetric combination of terms in each of the which is responsible for rendering the Boulware–Deser ghost nondynamical.
See also
References
- ^
- ^
- ^ S2CID 118427524.
- S2CID 189831561
- ^ OCLC 824636830.
One interesting by-product of this was the knocking down of the Rosen bimetric theory of gravity, which hitherto was in agreement with solar system experiments. The theory turned out to make radically different predictions for gravitational wave energy loss than general relativity, and was in severe disagreement with the observations.
- ^ "Nathan Rosen — The Man and His Life-Work", Technion.ac.il, 2011, web: Technion-rosen.
- S2CID 119229428.
- ^ Zyga, Lisa (21 September 2017). "Gravitational waves may oscillate, just like neutrinos". Phys.org. Omicron Technology Limited.
- S2CID 54533200.
- S2CID 118371127.
- S2CID 36160359.
- ISSN 1434-6052.
- S2CID 5063.
- S2CID 119152509.
- .
- .
- ^ O'Dowd, Matt (7 February 2019). "Sound Waves from the Beginning of Time". PBS Space Time. PBS. 16 minutes in. Retrieved 8 February 2019.
An alternate model that how negative mass might behave: in so-called 'bimetric gravity' you can have positive and negative masses, but each is described by its own set of Einstein field equations. That's kinda like having 'parallel spacetimes', one with positive and one with negative masses, which can still interact gravitationally. In these models, like masses attract and opposite masses repel… and you don't get the crazy 'runaway motion' that occurs if you put both positive and negative masses in the same spacetime. So no perpetual motion machines… It can also be used to explain dark energy and dark matter.
- S2CID 122535391.
- S2CID 122332164.
- S2CID 120011940.
- S2CID 121456662.
- S2CID 189851052.
- S2CID 3564069.
- Nature News. Retrieved 2019-01-23.
- S2CID 124214140.
- S2CID 119240485.