Bird
Birds Temporal range:
Possible Early Cretaceous or early Late Cretaceous origin based on molecular clock[3][4][5] | |
---|---|
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Chordata |
Clade: | Sauropsida |
Clade: | Archosauria |
Clade: | Avemetatarsalia |
Clade: | Dinosauria |
Clade: | Theropoda |
Clade: | Ornithurae |
Class: | Aves Linnaeus, 1758[6] |
Extant clades | |
| |
Synonyms | |
|
Birds are a group of
Birds are
Many
Many species of birds are economically important as food for human consumption and raw material in manufacturing, with domesticated and undomesticated birds being important sources of eggs, meat, and feathers. Songbirds, parrots, and other species are popular as pets. Guano (bird excrement) is harvested for use as a fertiliser. Birds figure throughout human culture. About 120 to 130 species have become extinct due to human activity since the 17th century, and hundreds more before then. Human activity threatens about 1,200 bird species with extinction, though efforts are underway to protect them. Recreational birdwatching is an important part of the ecotourism industry.
Evolution and classification
The first
Definition
Aves and a sister group, the order
Gauthier and de Queiroz identified four different definitions for the same biological name "Aves", which is a problem.[13] The authors proposed to reserve the term Aves only for the crown group consisting of the last common ancestor of all living birds and all of its descendants,[13] which corresponds to meaning number 4 below. They assigned other names to the other groups.[13]
The birds' phylogenetic relationships to major living reptile groups. (The turtles' position is uncertain: Some authorities embed them inside the Archosaurs, with birds and crocodiles.) |
- Aves can mean all archosaurs closer to birds than to crocodiles (alternately Avemetatarsalia)
- Aves can mean those advanced archosaurs with feathers (alternately Avifilopluma)
- Aves can mean those feathered dinosaurs that fly (alternately Avialae)
- Aves can mean the last common ancestor of all the currently living birds and all of its descendants (a "crown group", in this sense synonymous with Neornithes)
Under the fourth definition Archaeopteryx, traditionally considered one of the earliest members of Aves, is removed from this group, becoming a non-avian dinosaur instead. These proposals have been adopted by many researchers in the field of palaeontology and
| |||||||||||||||||||||||||||
Cladogram showing the results of a phylogenetic study by Cau, 2018.[15] |
Most researchers define Avialae as branch-based clade, though definitions vary. Many authors have used a definition similar to "all
Despite being currently one of the most widely used, the crown-group definition of Aves has been criticised by some researchers. Lee and Spencer (1997) argued that, contrary to what Gauthier defended, this definition would not increase the stability of the clade and the exact content of Aves will always be uncertain because any defined clade (either crown or not) will have few synapomorphies distinguishing it from its closest relatives. Their alternative definition is synonymous to Avifilopluma.[20]
Dinosaurs and the origin of birds
| |||||||||||||||
Cladogram following the results of a phylogenetic study by Cau et al., 2015[21] |
Based on fossil and biological evidence, most scientists accept that birds are a specialised subgroup of
The consensus view in contemporary
The
Early evolution
Over 40% of key traits found in modern birds evolved during the 60 million year transition from the earliest
The oldest known paravian (and probably the earliest avialan) fossils come from the
The well-known probable early avialan, Archaeopteryx, dates from slightly later Jurassic rocks (about 155 million years old) from Germany. Many of these early avialans shared unusual anatomical features that may be ancestral to modern birds but were later lost during bird evolution. These features include enlarged claws on the second toe which may have been held clear of the ground in life, and long feathers or "hind wings" covering the hind limbs and feet, which may have been used in aerial maneuvering.[36]
Avialans diversified into a wide variety of forms during the
A third stage of bird evolution starting with Ornithothoraces (the "bird-chested" avialans) can be associated with the refining of aerodynamics and flight capabilities, and the loss or co-ossification of several skeletal features. Particularly significant are the development of an enlarged, keeled sternum and the alula, and the loss of grasping hands. [15]
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cladogram following the results of a phylogenetic study by Cau et al., 2015[21] |
Early diversity of bird ancestors
| |||||||||||||||
Mesozoic bird phylogeny simplified after Wang et al., 2015's phylogenetic analysis[40] |
The first large, diverse lineage of short-tailed avialans to evolve were the Enantiornithes, or "opposite birds", so named because the construction of their shoulder bones was in reverse to that of modern birds. Enantiornithes occupied a wide array of ecological niches, from sand-probing shorebirds and fish-eaters to tree-dwelling forms and seed-eaters. While they were the dominant group of avialans during the Cretaceous period, enantiornithes became extinct along with many other dinosaur groups at the end of the Mesozoic era.[37][41]
Many species of the second major avialan lineage to diversify, the
The latter included the superficially
A study on mosaic evolution in the avian skull found that the last common ancestor of all Neornithes might have had a beak similar to that of the modern hook-billed vanga and a skull similar to that of the Eurasian golden oriole. As both species are small aerial and canopy foraging omnivores, a similar ecological niche was inferred for this hypothetical ancestor.[46]
Diversification of modern birds
| |||||||||
Major groups of modern birds based on Sibley-Ahlquist taxonomy
|
Most studies agree on a Cretaceous age for the most recent common ancestor of modern birds but estimates range from the Early Cretaceous[3][47] to the latest Cretaceous.[48][4] Similarly, there is no agreement on whether most of the early diversification of modern birds occurred in the Cretaceous and associated with breakup of the supercontinent Gondwana or occurred later and potentially as a consequence of the Cretaceous–Palaeogene extinction event.[49] This disagreement is in part caused by a divergence in the evidence; most molecular dating studies suggests a Cretaceous evolutionary radiation, while fossil evidence points to a Cenozoic radiation (the so-called 'rocks' versus 'clocks' controversy).
The discovery of
Attempts to reconcile molecular and fossil evidence using genomic-scale DNA data and comprehensive fossil information have not resolved the controversy.
Classification of bird orders
All modern birds lie within the
Cladogram of modern bird relationships based on Stiller et al. (2024).[58]
Aves |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The classification of birds is a contentious issue.
Genomics
As of 2010[update], the genome had been sequenced for only two birds, the chicken and the zebra finch. As of 2022[update] the genomes of 542 species of birds had been completed. At least one genome has been sequenced from every order.[62][63] These include at least one species in about 90% of extant avian families (218 out of 236 families recognised by the Howard and Moore Checklist).[64]
Being able to sequence and compare whole genomes gives researchers many types of information, about genes, the DNA that regulates the genes, and their evolutionary history. This has led to reconsideration of some of the classifications that were based solely on the identification of protein-coding genes. Waterbirds such as
Distribution
Birds live and breed in most terrestrial habitats and on all seven continents, reaching their southern extreme in the snow petrel's breeding colonies up to 440 kilometres (270 mi) inland in Antarctica.[66] The highest bird diversity occurs in tropical regions. It was earlier thought that this high diversity was the result of higher speciation rates in the tropics; however studies from the 2000s found higher speciation rates in the high latitudes that were offset by greater extinction rates than in the tropics.[67] Many species migrate annually over great distances and across oceans; several families of birds have adapted to life both on the world's oceans and in them, and some seabird species come ashore only to breed,[68] while some penguins have been recorded diving up to 300 metres (980 ft) deep.[69]
Many bird species have established breeding populations in areas to which they have been
Anatomy and physiology
Compared with other vertebrates, birds have a body plan that shows many unusual adaptations, mostly to facilitate flight.
Skeletal system
The skeleton consists of very lightweight bones. They have large air-filled cavities (called pneumatic cavities) which connect with the
Excretory system
Like the
It is a common but not universal feature of
Reproductive system
Most male birds do not have
Birds are solely gonochoric.[100] Meaning they have two sexes: either female or male. The sex of birds is determined by the Z and W sex chromosomes, rather than by the X and Y chromosomes present in mammals. Male birds have two Z chromosomes (ZZ), and female birds have a W chromosome and a Z chromosome (WZ).[77] A complex system of disassortative mating with two morphs is involved in the white-throated sparrow Zonotrichia albicollis, where white- and tan-browed morphs of opposite sex pair, making it appear as if four sexes were involved since any individual is compatible with only a fourth of the population.[101]
In nearly all species of birds, an individual's sex is determined at fertilisation. However, one 2007 study claimed to demonstrate temperature-dependent sex determination among the Australian brushturkey, for which higher temperatures during incubation resulted in a higher female-to-male sex ratio.[102] This, however, was later proven to not be the case. These birds do not exhibit temperature-dependent sex determination, but temperature-dependent sex mortality.[103]
Respiratory and circulatory systems
Birds have one of the most complex
In birds, the main arteries taking blood away from the heart originate from the right
Heart type and features
The avian circulatory system is driven by a four-chambered, myogenic heart contained in a fibrous pericardial sac. This pericardial sac is filled with a
The
Organisation
Birds have a very efficient system for diffusing oxygen into the blood; birds have a ten times greater surface area to gas exchange volume than mammals. As a result, birds have more blood in their capillaries per unit of volume of lung than a mammal.[110] The arteries are composed of thick elastic muscles to withstand the pressure of the ventricular contractions, and become more rigid as they move away from the heart. Blood moves through the arteries, which undergo vasoconstriction, and into arterioles which act as a transportation system to distribute primarily oxygen as well as nutrients to all tissues of the body. As the arterioles move away from the heart and into individual organs and tissues they are further divided to increase surface area and slow blood flow. Blood travels through the arterioles and moves into the capillaries where gas exchange can occur.[111]
Capillaries are organised into capillary beds in tissues; it is here that blood exchanges oxygen for carbon dioxide waste. In the capillary beds, blood flow is slowed to allow maximum diffusion of oxygen into the tissues. Once the blood has become deoxygenated, it travels through venules then veins and back to the heart. Veins, unlike arteries, are thin and rigid as they do not need to withstand extreme pressure. As blood travels through the venules to the veins a funneling occurs called vasodilation bringing blood back to the heart.[111] Once the blood reaches the heart, it moves first into the right atrium, then the right ventricle to be pumped through the lungs for further gas exchange of carbon dioxide waste for oxygen. Oxygenated blood then flows from the lungs through the left atrium to the left ventricle where it is pumped out to the body.[20]
Nervous system
The
Many birds show plumage patterns in
Defence and intraspecific combat
A few species are able to use chemical defences against predators; some Procellariiformes can eject an unpleasant stomach oil against an aggressor,[125] and some species of pitohuis from New Guinea have a powerful neurotoxin in their skin and feathers.[126]
A lack of field observations limit our knowledge, but intraspecific conflicts are known to sometimes result in injury or death.
Feathers, plumage, and scales
Feathers are a feature characteristic of birds (though also present in
Plumage is regularly
A small number of species, such as ducks and geese, lose all of their flight feathers at once, temporarily becoming flightless.[132] As a general rule, the tail feathers are moulted and replaced starting with the innermost pair.[131] Centripetal moults of tail feathers are however seen in the Phasianidae.[133] The centrifugal moult is modified in the tail feathers of woodpeckers and treecreepers, in that it begins with the second innermost pair of feathers and finishes with the central pair of feathers so that the bird maintains a functional climbing tail.[131][134] The general pattern seen in passerines is that the primaries are replaced outward, secondaries inward, and the tail from centre outward.[135] Before nesting, the females of most bird species gain a bare brood patch by losing feathers close to the belly. The skin there is well supplied with blood vessels and helps the bird in incubation.[136]
Feathers require maintenance and birds preen or groom them daily, spending an average of around 9% of their daily time on this.
The
Flight
Most birds can fly, which distinguishes them from almost all other vertebrate classes. Flight is the primary means of locomotion for most bird species and is used for searching for food and for escaping from predators. Birds have various adaptations for flight, including a lightweight skeleton, two large flight muscles, the pectoralis (which accounts for 15% of the total mass of the bird) and the supracoracoideus, as well as a modified forelimb (wing) that serves as an aerofoil.[77]
Wing shape and size generally determine a bird's flight style and performance; many birds combine powered, flapping flight with less energy-intensive soaring flight. About 60 extant bird species are flightless, as were many extinct birds.[141] Flightlessness often arises in birds on isolated islands, most likely due to limited resources and the absence of mammalian land predators.[142] Flightlessness is almost exclusively correlated with gigantism due to an island's inherent condition of isolation.[143] Although flightless, penguins use similar musculature and movements to "fly" through the water, as do some flight-capable birds such as auks, shearwaters and dippers.[144]
Behaviour
Most birds are
Diet and feeding
Birds that employ many strategies to obtain food or feed on a variety of food items are called generalists, while others that concentrate time and effort on specific food items or have a single strategy to obtain food are considered specialists.[77] Avian foraging strategies can vary widely by species. Many birds glean for insects, invertebrates, fruit, or seeds. Some hunt insects by suddenly attacking from a branch. Those species that seek pest insects are considered beneficial 'biological control agents' and their presence encouraged in biological pest control programmes.[150] Combined, insectivorous birds eat 400–500 million metric tons of arthropods annually.[151]
Nectar feeders such as
Some species, including
Water and drinking
Water is needed by many birds although their mode of excretion and lack of sweat glands reduces the physiological demands.[162] Some desert birds can obtain their water needs entirely from moisture in their food. Some have other adaptations such as allowing their body temperature to rise, saving on moisture loss from evaporative cooling or panting.[163] Seabirds can drink seawater and have salt glands inside the head that eliminate excess salt out of the nostrils.[164]
Most birds scoop water in their beaks and raise their head to let water run down the throat. Some species, especially of arid zones, belonging to the
Feather care
Feathers, being critical to the survival of a bird, require maintenance. Apart from physical wear and tear, feathers face the onslaught of fungi,
Migration
Many bird species migrate to take advantage of global differences of
Migration is highly demanding energetically, particularly as birds need to cross deserts and oceans without refuelling. Landbirds have a flight range of around 2,500 km (1,600 mi) and shorebirds can fly up to 4,000 km (2,500 mi),
Some bird species undertake shorter migrations, travelling only as far as is required to avoid bad weather or obtain food. Irruptive species such as the boreal finches are one such group and can commonly be found at a location in one year and absent the next. This type of migration is normally associated with food availability.[177] Species may also travel shorter distances over part of their range, with individuals from higher latitudes travelling into the existing range of conspecifics; others undertake partial migrations, where only a fraction of the population, usually females and subdominant males, migrates.[178] Partial migration can form a large percentage of the migration behaviour of birds in some regions; in Australia, surveys found that 44% of non-passerine birds and 32% of passerines were partially migratory.[179]
The ability of birds to return to precise locations across vast distances has been known for some time; in an experiment conducted in the 1950s, a
Communication
Birds communicate primarily using visual and auditory signals. Signals can be interspecific (between species) and intraspecific (within species).
Birds sometimes use plumage to assess and assert social dominance,[185] to display breeding condition in sexually selected species, or to make threatening displays, as in the sunbittern's mimicry of a large predator to ward off hawks and protect young chicks.[186]
Visual communication among birds may also involve ritualised displays, which have developed from non-signalling actions such as preening, the adjustments of feather position, pecking, or other behaviour. These displays may signal aggression or submission or may contribute to the formation of pair-bonds.[77] The most elaborate displays occur during courtship, where "dances" are often formed from complex combinations of many possible component movements;[187] males' breeding success may depend on the quality of such displays.[188]
Flocking and other associations
While some birds are essentially territorial or live in small family groups, other birds may form large
Birds sometimes also form associations with non-avian species. Plunge-diving
Resting and roosting
The high metabolic rates of birds during the active part of the day is supplemented by rest at other times. Sleeping birds often use a type of sleep known as vigilant sleep, where periods of rest are interspersed with quick eye-opening "peeks", allowing them to be sensitive to disturbances and enable rapid escape from threats.[202] Swifts are believed to be able to sleep in flight and radar observations suggest that they orient themselves to face the wind in their roosting flight.[203] It has been suggested that there may be certain kinds of sleep which are possible even when in flight.[204]
Some birds have also demonstrated the capacity to fall into
Many sleeping birds bend their heads over their backs and tuck their
Breeding
Social systems
Ninety-five per cent of bird species are socially monogamous. These species pair for at least the length of the breeding season or—in some cases—for several years or until the death of one mate.
For females, possible benefits of extra-pair copulation include getting better genes for her offspring and insuring against the possibility of infertility in her mate.[219] Males of species that engage in extra-pair copulations will closely guard their mates to ensure the parentage of the offspring that they raise.[220]
Other mating systems, including polygyny, polyandry, polygamy, polygynandry, and promiscuity, also occur.[77] Polygamous breeding systems arise when females are able to raise broods without the help of males.[77] Mating systems vary across bird families[221] but variations within species are thought to be driven by environmental conditions.[222] A unique system is the formation of trios where a third individual is allowed by a breeding pair temporarily into the territory to assist with brood raising thereby leading to higher fitness.[223][190]
Breeding usually involves some form of courtship display, typically performed by the male.
Territories, nesting and incubation
Many birds actively defend a territory from others of the same species during the breeding season; maintenance of territories protects the food source for their chicks. Species that are unable to defend feeding territories, such as seabirds and swifts, often breed in colonies instead; this is thought to offer protection from predators. Colonial breeders defend small nesting sites, and competition between and within species for nesting sites can be intense.[230]
All birds lay
Bird eggs are usually laid in a
Incubation, which regulates temperature for chick development, usually begins after the last egg has been laid.[77] In monogamous species incubation duties are often shared, whereas in polygamous species one parent is wholly responsible for incubation. Warmth from parents passes to the eggs through brood patches, areas of bare skin on the abdomen or breast of the incubating birds. Incubation can be an energetically demanding process; adult albatrosses, for instance, lose as much as 83 grams (2.9 oz) of body weight per day of incubation.[235] The warmth for the incubation of the eggs of megapodes comes from the sun, decaying vegetation or volcanic sources.[236] Incubation periods range from 10 days (in woodpeckers, cuckoos and passerine birds) to over 80 days (in albatrosses and kiwis).[77]
The diversity of characteristics of birds is great, sometimes even in closely related species. Several avian characteristics are compared in the table below.[237][238]
Species | Adult weight (grams) |
Incubation (days) |
Clutches (per year) |
Clutch size |
---|---|---|---|---|
Ruby-throated hummingbird (Archilochus colubris) | 3 | 13 | 2.0 | 2 |
House sparrow (Passer domesticus) | 25 | 11 | 4.5 | 5 |
Greater roadrunner (Geococcyx californianus) | 376 | 20 | 1.5 | 4 |
Turkey vulture (Cathartes aura) | 2,200 | 39 | 1.0 | 2 |
Laysan albatross (Phoebastria immutabilis) | 3,150 | 64 | 1.0 | 1 |
Magellanic penguin (Spheniscus magellanicus) | 4,000 | 40 | 1.0 | 1 |
Golden eagle (Aquila chrysaetos) | 4,800 | 40 | 1.0 | 2 |
Wild turkey (Meleagris gallopavo) | 6,050 | 28 | 1.0 | 11 |
Parental care and fledging
At the time of their hatching, chicks range in development from helpless to independent, depending on their species. Helpless chicks are termed
The length and nature of parental care varies widely amongst different orders and species. At one extreme, parental care in megapodes ends at hatching; the newly hatched chick digs itself out of the nest mound without parental assistance and can fend for itself immediately.[242] At the other extreme, many seabirds have extended periods of parental care, the longest being that of the great frigatebird, whose chicks take up to six months to fledge and are fed by the parents for up to an additional 14 months.[243] The chick guard stage describes the period of breeding during which one of the adult birds is permanently present at the nest after chicks have hatched. The main purpose of the guard stage is to aid offspring to thermoregulate and protect them from predation.[244]
In some species, both parents care for nestlings and fledglings; in others, such care is the responsibility of only one sex. In some species,
The point at which chicks fledge varies dramatically. The chicks of the Synthliboramphus murrelets, like the ancient murrelet, leave the nest the night after they hatch, following their parents out to sea, where they are raised away from terrestrial predators.[248] Some other species, such as ducks, move their chicks away from the nest at an early age. In most species, chicks leave the nest just before, or soon after, they are able to fly. The amount of parental care after fledging varies; albatross chicks leave the nest on their own and receive no further help, while other species continue some supplementary feeding after fledging.[249] Chicks may also follow their parents during their first migration.[250]
Brood parasites
Sexual selection
Birds have
Inbreeding depression
Inbreeding causes early death (inbreeding depression) in the zebra finch Taeniopygia guttata.[256] Embryo survival (that is, hatching success of fertile eggs) was significantly lower for sib-sib mating pairs than for unrelated pairs.[257]
Darwin's finch Geospiza scandens experiences inbreeding depression (reduced survival of offspring) and the magnitude of this effect is influenced by environmental conditions such as low food availability.[258]
Inbreeding avoidance
Incestuous matings by the purple-crowned fairy wren Malurus coronatus result in severe fitness costs due to inbreeding depression (greater than 30% reduction in hatchability of eggs).[259] Females paired with related males may undertake extra pair matings (see Promiscuity#Other animals for 90% frequency in avian species) that can reduce the negative effects of inbreeding. However, there are ecological and demographic constraints on extra pair matings. Nevertheless, 43% of broods produced by incestuously paired females contained extra pair young.[259]
Inbreeding depression occurs in the great tit (Parus major) when the offspring produced as a result of a mating between close relatives show reduced fitness. In natural populations of Parus major, inbreeding is avoided by dispersal of individuals from their birthplace, which reduces the chance of mating with a close relative.[260]
Southern pied babblers Turdoides bicolor appear to avoid inbreeding in two ways. The first is through dispersal, and the second is by avoiding familiar group members as mates.[261]
Cooperative breeding in birds typically occurs when offspring, usually males, delay dispersal from their natal group in order to remain with the family to help rear younger kin.[262] Female offspring rarely stay at home, dispersing over distances that allow them to breed independently, or to join unrelated groups. In general, inbreeding is avoided because it leads to a reduction in progeny fitness (inbreeding depression) due largely to the homozygous expression of deleterious recessive alleles.[263] Cross-fertilisation between unrelated individuals ordinarily leads to the masking of deleterious recessive alleles in progeny.[264][265]
Ecology
Birds occupy a wide range of ecological positions.
Some nectar-feeding birds are important pollinators, and many frugivores play a key role in seed dispersal.[268] Plants and pollinating birds often coevolve,[269] and in some cases a flower's primary pollinator is the only species capable of reaching its nectar.[270]
Birds are often important to island ecology. Birds have frequently reached islands that mammals have not; on those islands, birds may fulfil ecological roles typically played by larger animals. For example, in New Zealand nine species of
Many birds act as ecosystem engineers through the construction of nests, which provide important microhabitats and food for hundreds of species of invertebrates.[272][273] Nesting seabirds may affect the ecology of islands and surrounding seas, principally through the concentration of large quantities of guano, which may enrich the local soil[274] and the surrounding seas.[275]
A wide variety of avian ecology field methods, including counts, nest monitoring, and capturing and marking, are used for researching avian ecology.[276]
Relationship with humans
Since birds are highly visible and common animals, humans have had a relationship with them since the dawn of man.
Birds can act as vectors for spreading diseases such as psittacosis, salmonellosis, campylobacteriosis, mycobacteriosis (avian tuberculosis), avian influenza (bird flu), giardiasis, and cryptosporidiosis over long distances. Some of these are zoonotic diseases that can also be transmitted to humans.[286]
Economic importance
Domesticated birds raised for meat and eggs, called
Other commercially valuable products from birds include feathers (especially the down of geese and ducks), which are used as insulation in clothing and bedding, and seabird faeces (guano), which is a valuable source of phosphorus and nitrogen. The War of the Pacific, sometimes called the Guano War, was fought in part over the control of guano deposits.[291]
Birds have been domesticated by humans both as pets and for practical purposes. Colourful birds, such as
Amateur bird enthusiasts (called birdwatchers, twitchers or, more commonly,
In religion and mythology
Birds play prominent and diverse roles in religion and mythology. In religion, birds may serve as either messengers or priests and leaders for a
They may also serve as
In culture and folklore
Birds have featured in culture and art since prehistoric times, when they were represented in early
Among the most famous of these bird artists was
Perceptions of bird species vary across cultures.
In music
A 2023 archaeological excavation of a 10000-year-old site in Israel yielded hollow wing bones of coots and ducks with perforations made on the side that are thought to have allowed them to be used as flutes or whistles possibly used by Natufian people to lure birds of prey.[331]
Threats and conservation
Human activities have caused population decreases or
The most commonly cited human threat to birds is
Governments and
Human activities have allowed the expansion of a few temperate area species, such as the
See also
- Avian sleep
- Biodiversity loss
- Climate change and birds
- Glossary of bird terms
- List of individual birds
- Ornithology
- List of bird genera
References
- ^ S2CID 212937591.
- PMID 26998335.
- ^ PMID 27989673.
- ^ PMID 32781465.
- S2CID 249047881.
- ^ Brands, Sheila (14 August 2008). "Systema Naturae 2000 / Classification, Class Aves". Project: The Taxonomicon. Retrieved 11 June 2012.
- ^ PMID 26824065.
- ISBN 84-87334-10-5.
- ^ Linnaeus, Carolus (1758). Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata (in Latin). Holmiae. (Laurentii Salvii). p. 824.
- ^ PMID 18784798.
- ISBN 0-12-226810-5.
- ^ ISBN 0-940228-14-9.
- ^ a b c d Gauthier, J.; de Queiroz, K. (2001). "Feathered dinosaurs, flying dinosaurs, crown dinosaurs, and the name Aves". In Gauthier, J. A.; Gall, L. F. (eds.). New perspectives on the origin and early evolution of birds: proceedings of the International Symposium in Honor of John H. Ostrom. New Haven, CT: Peabody Museum of Natural History, Yale University. pp. 7–41.
- ^ S2CID 4364892.
- ^ a b c d e Cau, Andrea (2018). "The assembly of the avian body plan: a 160-million-year long process" (PDF). Bollettino della Società Paleontologica Italiana. Archived (PDF) from the original on 9 October 2022.
- ^ Weishampel, David B.; Dodson, Peter; Osmólska, Halszka, eds. (2004). The Dinosauria (Second ed.). University of California Press. pp. 861 pp.
- S2CID 83726237.
- S2CID 55462557.
- ^ Gauthier, J. (1986). "Saurischian monophyly and the origin of birds". In Padian, K. (ed.). The origin of birds and the evolution of flight. San Francisco, California: Mem. Calif. Acad. Sci. pp. 1–55.
- ^ ISBN 978-0-12-676460-4. Retrieved 14 May 2020.
- ^ PMID 26157616.
- S2CID 16195453.
- S2CID 206517571.
- ISBN 0-8018-6763-0.
- ISBN 0-13-186266-9.
- ^ Borenstein, Seth (31 July 2014). "Study traces dinosaur evolution into early birds". Associated Press. Archived from the original on 8 August 2014. Retrieved 3 August 2014.
- S2CID 37866029.
- (PDF) from the original on 9 October 2022.
- S2CID 205225790.
- (PDF) from the original on 9 October 2022.
- (PDF) from the original on 2 June 2020.
- ^ Luiggi, Christina (July 2011). "On the Origin of Birds". The Scientist. Archived from the original on 16 June 2012. Retrieved 11 June 2012.
- .
- ^ Ivanov, M.; Hrdlickova, S.; Gregorova, R. (2001). The Complete Encyclopedia of Fossils. Netherlands: Rebo Publishers. p. 312.
- ^ S2CID 174811556.
- ^ S2CID 206544531.
- ^ ISBN 978-0-86840-413-4.
- .
- ^ Agency France-Presse (April 2011). "Birds survived dino extinction with keen senses". Cosmos Magazine. Archived from the original on 2 April 2015. Retrieved 11 June 2012.
- PMID 25942493.
- ^ Elbein, Asher. "Why Do Birds Have Such Skinny Legs?". Scientific American. Retrieved 15 February 2024.
- S2CID 3099017.
- S2CID 84035285. Archived from the original(PDF) on 3 March 2009. Retrieved 14 September 2007.
- PMID 21978465. Archived from the originalon 28 July 2014.
- PMID 16533313.
- PMID 29279399.
- PMID 24449041.
- ^ S2CID 205246158.
- PMID 17148284. Archived from the original(PDF) on 25 March 2009. Retrieved 4 July 2008.
- (PDF) from the original on 10 June 2020.
- S2CID 84035285. Archived from the originalon 19 June 2015. Retrieved 22 March 2015.
- ^ PMID 25504713.
- S2CID 206555952.
- ^ Ritchison, Gary. "Bird biogeography". Avian Biology. Eastern Kentucky University. Retrieved 10 April 2008.
- ^ Cracraft, J. (2013). "Avian Higher-level Relationships and Classification: Nonpasseriforms". In Dickinson, E. C.; Remsen, J. V. (eds.). The Howard and Moore Complete Checklist of the Birds of the World. Vol. 1 (4th ed.). Aves Press, Eastbourne, U.K. pp. xxi–xli.
- .
- ^ "October 2022 | Clements Checklist". www.birds.cornell.edu. Retrieved 6 January 2023.
- ^ Stiller, J., Feng, S., Chowdhury, AA. et al. Complexity of avian evolution revealed by family-level genomes. Nature (2024). https://doi.org/10.1038/s41586-024-07323-1
- ^ Boyd, John (2007). "NEORNITHES: 46 Orders" (PDF). John Boyd's website. Archived (PDF) from the original on 9 October 2022. Retrieved 30 December 2017.
- ISBN 0-300-04085-7.
- OCLC 517185.
- ^ . Retrieved 11 February 2022.
- ^ S2CID 239655248.
- PMID 33177665.
- ISBN 0-12-517375-X.
- ISBN 0-19-850125-0.
- S2CID 46640620.
- ^ ISBN 0-8493-9882-7.
- PMID 11948196.
- ISBN 0-632-02011-3.
- doi:10.2173/bna.322. Retrieved 13 December 2015.
- JSTOR 1521007.
- ISBN 84-87334-15-6.
- ISBN 0-7136-6933-0.
- ISBN 9788496553637.
- ^ Ehrlich, Paul R.; David S. Dobkin; Darryl Wheye (1988). "Adaptations for Flight". Birds of Stanford. Stanford University. Retrieved 13 December 2007. Based on The Birder's Handbook (Paul Ehrlich, David Dobkin, and Darryl Wheye. 1988. Simon and Schuster, New York.)
- ^ ISBN 0-7167-2415-4.
- ^ Noll, Paul. "The Avian Skeleton". paulnoll.com. Retrieved 13 December 2007.
- ^ "Skeleton of a typical bird". Fernbank Science Center's Ornithology Web. Retrieved 13 December 2007.
- ^ "The Surprising Closest Relative of the Huge Elephant Birds". Science & Innovation. 22 May 2014. Archived from the original on 14 December 2018. Retrieved 6 March 2019.
- ^ Ehrlich, Paul R.; David S. Dobkin; Darryl Wheye (1988). "Drinking". Birds of Stanford. Stanford University. Retrieved 13 December 2007.
- S2CID 18540594.
- PMID 12814783.
- S2CID 4372695.
- PMID 14343146.
- S2CID 85424175.
- JSTOR 1365774. Archived from the original(PDF) on 24 February 2014 – via Searchable Ornithological Research Archive.
- ^ Jones, Benji (7 August 2018). "What Are Fecal Sacs? Bird Diapers, Basically". Audubon. Retrieved 17 January 2021.
- ISBN 978-0-12-813252-4.
- ^ Yong, Ed (6 June 2013). "How Chickens Lost Their Penises (And Ducks Kept Theirs)". Phenomena: Not Exactly Rocket Science. National Geographic. Archived from the original on 9 June 2013. Retrieved 3 October 2013.
- ^ "Ornithology, 3rd Edition – Waterfowl: Order Anseriformes". Archived from the original on 22 June 2015. Retrieved 3 October 2013.
- S2CID 5717257. Archived from the original(PDF) on 4 March 2016.
- S2CID 84524738.
- PMID 23965601.
- .
- ^ S2CID 3035039.
- S2CID 13704885.
- PMID 5948479.
- S2CID 4017618.
- ISBN 978-4-431-56609-0.
- PMID 26804558.
- .
- PMID 17148121.
- PMID 17038201.)
{{cite journal}}
: CS1 maint: DOI inactive as of January 2024 (link - ^ S2CID 45809019.
- .
- S2CID 29778484.
- ^ a b Whittow, G. (2000). Whittow, G. Causey (ed.). Sturkie's Avian Physiology. San Diego: Academic Press.
- ^ Molnar, Charles; Gair, Jane (14 May 2015). "21.3. Mammalian Heart and Blood Vessels".
- ^ a b Hoagstrom, C.W. (2002). "Vertebrate Circulation". Magill's Encyclopedia of Science: Animal Life. 1. Pasadena, California: Salem Press: 217–219.
- ^ a b Hill, Richard W. (2012). Hill, Richard W.; Wyse, Gordon A.; Anderson, Margaret (eds.). Animal Physiology (Third ed.). Sunderland, MA: Sinauer Associates. pp. 647–678.
- ISBN 0-7513-5176-8.
- ^ Sales, James (2005). "The endangered kiwi: a review" (PDF). Folia Zoologica. 54 (1–2): 1–20. Archived from the original (PDF) on 26 September 2007. Retrieved 15 September 2007.
- ^ Ehrlich, Paul R.; David S. Dobkin; Darryl Wheye (1988). "The Avian Sense of Smell". Birds of Stanford. Stanford University. Retrieved 13 December 2007.
- JSTOR 1368131. Archived from the original(PDF) on 25 December 2013.
- PMID 9461554.
- S2CID 90704358.
- PMC 1688915.
- S2CID 4356193.
- ISBN 0-12-552455-2.
- PMID 12641836.
- ^ S2CID 15836436.
- S2CID 44351032.
- .
- ^ Warham, John (1 May 1977). "The incidence, function and ecological significance of petrel stomach oils" (PDF). Proceedings of the New Zealand Ecological Society. 24 (3): 84–93. Archived (PDF) from the original on 9 October 2022.
- PMID 1439786.
- ^ PMID 21208965.
- JSTOR 1369464.
- ^ Guthrie, R. Dale. "How We Use and Show Our Social Organs". Body Hot Spots: The Anatomy of Human Social Organs and Behavior. Archived from the original on 21 June 2007. Retrieved 19 October 2007.
- (PDF) from the original on 9 October 2022.
- ^ ISBN 0-12-552455-2.
- ^ de Beer, S. J.; Lockwood, G. M.; Raijmakers, J. H. F. S.; Raijmakers, J. M. H.; Scott, W. A.; Oschadleus, H. D.; Underhill, L. G. (2001). SAFRING Bird Ringing Manual (PDF). Archived from the original (PDF) on 19 October 2017.
- JSTOR 3677029.
- JSTOR 4081571. Archived from the original(PDF) on 4 October 2014.
- ^ Payne, Robert B. "Birds of the World, Biology 532". Bird Division, University of Michigan Museum of Zoology. Archived from the original on 26 February 2012. Retrieved 20 October 2007.
- S2CID 26584982.
- .
- .
- ^ Ehrlich, Paul R. (1986). "The Adaptive Significance of Anting" (PDF). The Auk. 103 (4): 835. Archived from the original (PDF) on 5 March 2016.
- ^ Lucas, Alfred M. (1972). Avian Anatomy – integument. East Lansing, Michigan: USDA Avian Anatomy Project, Michigan State University. pp. 67, 344, 394–601.
- ISBN 978-0-313-33545-7.
- S2CID 86511951.
- ^ "Flightlessness - an overview | ScienceDirect Topics".
- S2CID 14041453.
- JSTOR 4087761. Archived from the original(PDF) on 4 October 2014.
- (PDF) from the original on 9 October 2022.
- PMID 21113274.
- ISBN 0-691-01633-X.
- PMID 10687826. (Erratum in Proceedings of the Royal Society B 267(1461):2567.)
- ^ Reid, N. (2006). "Birds on New England wool properties – A woolgrower guide" (PDF). Land, Water & Wool Northern Tablelands Property Fact Sheet. Australian Government – Land and Water Australia. Archived from the original (PDF) on 15 March 2011. Retrieved 17 July 2010.
- PMID 29987431.
- .
- JSTOR 1942194.
- .
- S2CID 84979098.
- ISBN 978-0-19-861008-3.
- S2CID 17961182.
- JSTOR 3677021.
- (PDF) from the original on 9 October 2022.
- JSTOR 1369318.
- hdl:10261/47141.
- ISBN 90-367-2378-7. Archived from the originalon 5 April 2020. Retrieved 25 November 2008.
- (PDF) from the original on 9 October 2022.
- S2CID 2757501.
- hdl:10088/4338.
- JSTOR 1309104.
- (PDF) from the original on 9 October 2022.
- S2CID 84770232.
- S2CID 85677766.
- .
- PMID 10687826. (Erratum in Proceedings of the Royal Society B 267(1461):2567.)
- PMID 9317335.
- ^ "Long-distance Godwit sets new record". BirdLife International. 4 May 2007. Archived from the original on 2 October 2013. Retrieved 13 December 2007.
- PMID 20080662.
- PMID 16908846.
- S2CID 28990783.
- ^ Wilson, W. Herbert Jr. (1999). "Bird feeding and irruptions of northern finches:are migrations short stopped?" (PDF). North America Bird Bander. 24 (4): 113–121. Archived from the original (PDF) on 29 July 2014.
- S2CID 84665086.
- S2CID 82259620.
- ^ Rabenold, Kerry N. (1985). "Variation in Altitudinal Migration, Winter Segregation, and Site Tenacity in two subspecies of Dark-eyed Juncos in the southern Appalachians" (PDF). The Auk. 102 (4): 805–819. Archived (PDF) from the original on 9 October 2022.
- ISBN 84-87334-22-9.
- .
- PMID 11807103.
- PMID 10085262.
- JSTOR 4600164.
- JSTOR 1368675. Archived from the original(PDF) on 5 March 2016.
- ^ Pickering, S. P. C. (2001). "Courtship behaviour of the Wandering Albatross Diomedea exulans at Bird Island, South Georgia" (PDF). Marine Ornithology. 29 (1): 29–37. Archived (PDF) from the original on 9 October 2022.
- PMID 28567971.
- doi:10.1080/08927014.1994.9522988. Archived from the originalon 24 December 2007.
- ^ PMID 35357696.
- S2CID 45578269.
- S2CID 42276496.
- ^ Miskelly, C. M. (July 1987). "The identity of the hakawai". Notornis. 34 (2): 95–116.
- S2CID 31878910.
- .
- ^ ISBN 84-96553-06-X.
- S2CID 83826161.
- JSTOR 3565809.
- .
- (PDF) from the original on 9 October 2022.
- S2CID 22367357.
- S2CID 15957324. Archived from the original(PDF) on 27 December 2004.
- PMID 11916987.
- S2CID 1736369.
- JSTOR 4011301.
- .
- (PDF) from the original on 9 October 2022.
- ISSN 0141-6707.
- JSTOR 1366517.
- S2CID 42021321.
- .
- ^ Gill, Frank B.; Prum, Richard O. (2019). Ornithology (4 ed.). New York: W.H. Freeman. pp. 390–396.
- PMID 34625581.
- .
- S2CID 84735736.
- S2CID 84258620.
- .
- .
- S2CID 85745432.
- S2CID 86336632.
- PMC 1688567.
- PMID 21238200.
- PMID 34403633.
- ISBN 0-8050-1952-9.
- ISBN 0-394-53957-5.
- S2CID 26038182.
- ISBN 0-691-01633-X.
- ^ Bagemihl, Bruce (1999). Biological exuberance: Animal homosexuality and natural diversity. New York: St. Martin's. pp. 479–655.
- ISSN 1045-2249.
- .
- JSTOR 3565958.
- ^ ISBN 0-521-46038-7.
- S2CID 43254694.
- ISBN 0691083584.
- ISBN 0-12-735420-4.
- ISBN 0-19-854651-3.
- ^ "AnAge: The animal ageing and longevity database". Human Ageing and Genomics Resources. Retrieved 26 September 2014.
- ^ "Animal diversity web". University of Michigan, Museum of Zoology. Retrieved 26 September 2014.
- ISBN 978-1-4419-8468-5.
- ISBN 978-81-7141-933-3.
- ISBN 978-1-931439-23-7.
- ISBN 84-87334-15-6.
- ^ Metz, V. G.; Schreiber, E. A. (2002). "Great Frigatebird (Fregata minor)". In Poole, A.; Gill, F. (eds.). The Birds of North America, No 681. Philadelphia: The Birds of North America Inc.
- ^ Young, Euan (1994). Skua and Penguin. Predator and Prey. Cambridge University Press. p. 453.
- .
- ^ Cockburn A (1996). "Why do so many Australian birds cooperate? Social evolution in the Corvida". In Floyd R, Sheppard A, de Barro P (eds.). Frontiers in Population Ecology. Melbourne: CSIRO. pp. 21–42.
- PMID 16777726.
- ^ Gaston, AJ (1994). "Ancient Murrelet (Synthliboramphus antiquus)". In Poole, A.; Gill, F. (eds.). The Birds of North America, No. 132. Philadelphia & Washington, D.C.: The Academy of Natural Sciences & The American Ornithologists' Union.
- .
- hdl:10261/43767.
- ^ ISBN 0-85661-135-2.
- .
- .
- PMID 23300862.
- PMID 21819397.
- PMID 22643890.
- PMID 22643890.
- S2CID 16206523.
- ^ .
- PMID 18211876.
- PMID 22471769.
- S2CID 205476732.
- S2CID 771357.
- PMID 3324702.
- ISBN 978-0201442328.
- PMID 34257905.
- S2CID 27746219.
- ^ a b Clout, M; Hay, J (1989). "The importance of birds as browsers, pollinators and seed dispersers in New Zealand forests" (PDF). New Zealand Journal of Ecology. 12: 27–33.
- S2CID 87692272.
- S2CID 16315843.
- .
- JSTOR 3492142.
- S2CID 91557693.
- S2CID 83734364.
- .
- ISBN 0198520859.
- ISBN 0-938027-62-X.
- .
- JSTOR 3676463.
- .
- .
- .
- ^ Dolbeer, R.; Belant, J.; Sillings, J. (1993). "Shooting Gulls Reduces Strikes with Aircraft at John F. Kennedy International Airport". Wildlife Society Bulletin. 21: 442–450.
- National Audubon Society. Retrieved 19 March 2017.
- ^ Zimmer, Carl (19 September 2019). "Birds Are Vanishing From North America". The New York Times. Retrieved 19 September 2019.
- PMID 15931279.
- ISBN 978-1-84407-185-2.
- ^ "Poultry species: Gateway to poultry production and products". Food and Agriculture Organization of the United Nations. FAO. Retrieved 27 January 2023.
- ^ Hamilton, S. (2000). "How precise and accurate are data obtained using. an infrared scope on burrow-nesting sooty shearwaters Puffinus griseus?" (PDF). Marine Ornithology. 28 (1): 1–6. Archived (PDF) from the original on 9 October 2022.
- .
- ^ "The Guano War of 1865–1866". World History at KMLA. Retrieved 18 December 2007.
- .
- JSTOR 4140937.
- ^ Pullis La Rouche, G. (2006). "Birding in the United States: a demographic and economic analysis". In Boere, G. C.; Galbraith, C. A.; Stroud, D. A. (eds.). Waterbirds around the world (PDF). Edinburgh: The Stationery Office. pp. 841–846. Archived from the original (PDF) on 4 March 2011.
- .
- S2CID 4216509.
- ^ Ingersoll, Ernest (1923). "Birds in legend, fable and folklore". Longmans, Green and Co. p. 214 – via Wayback Machine.
- JSTOR 3260591.
- JSTOR 1177550.
- ^ ISBN 0-8028-2330-0.
- ^ ISBN 978-1-315-20160-3.
- ^ Resig, Dorothy D. (9 February 2013). "The Enduring Symbolism of Doves, From Ancient Icon to Biblical Mainstay". BAR Magazine Bib-arch.org. Archived from the original on 31 January 2013. Retrieved 5 March 2013.
- ISBN 978-0-415-77523-6.
- ISBN 978-0804725156.
- ISBN 0-299-09184-8.
- ISBN 978-9004121423.
- ISBN 978-0-415-30066-7.
- ISBN 0-8196-0273-6.
- ^ a b Smith, S. (2011). "Generative landscapes: the step mountain motif in Tiwanaku iconography" (PDF). Ancient America. 12: 1–69. Archived from the original (Automatic PDF download) on 6 January 2019. Retrieved 24 April 2014.
- S2CID 163584284.
- S2CID 4349167.
- ISBN 978-0-909010-21-8.
- JSTOR 3252550.
- ^ "Birds of Mughal India – Shangri La". www.shangrilahawaii.org. Retrieved 6 June 2024.
- ^ "On Birds and Beauty - The Metropolitan Museum of Art". www.metmuseum.org. Retrieved 6 June 2024.
- .
- JSTOR 3289944.
- JSTOR 820195.
- S2CID 156972909.
- ^ "US Warplane Aircraft Names" (PDF). uswarpalnes.net. Retrieved 24 March 2023.[unreliable source?]
- ^ Enriquez, P. L.; Mikkola, H. (1997). "Comparative study of general public owl knowledge in Costa Rica, Central America and Malawi, Africa". In Duncan, J. R.; Johnson, D. H.; Nicholls, T. H. (eds.). Biology and conservation of owls of the Northern Hemisphere. General Technical Report NC-190. St. Paul, Minnesota: USDA Forest Service. pp. 160–166.
- ^ Lewis, DP (2005). "Owls in Mythology and Culture". Owlpages.com. Retrieved 15 September 2007.
- JSTOR 1260073.
- ^ Fox-Davies, A. C. (1985). A Complete Guide to Heraldry. Bloomsbury.
- ^ "Flag description - the World Factbook".
- ^ "List of National Birds of All Countries".
- .
- ISBN 0-521-77191-9.
- ^ Reich, Ronni (15 October 2010). "NJIT professor finds nothing cuckoo in serenading our feathered friends". Star Ledger. Retrieved 19 June 2011.
- ^ Taylor, Hollis (21 March 2011). "Composers' Appropriation of Pied Butcherbird Song: Henry Tate's "undersong of Australia" Comes of Age". Journal of Music Research Online. 2.
- PMID 37296190.
- ISBN 0-19-850837-9.
- ISBN 978-0-226-77142-7.
- ^ "BirdLife International announces more Critically Endangered birds than ever before". BirdLife International. 14 May 2009. Archived from the original on 17 June 2013. Retrieved 15 May 2009.
- ^ Kinver, Mark (13 May 2009). "Birds at risk reach record high". BBC News Online. Retrieved 15 May 2009.
- ^ "Nearly 3 Billion Birds Gone". CornellLab. Retrieved 5 May 2024.
- ^ Axelson, Gustave (19 September 2019). "Vanishing: More Than 1 in 4 Birds Has Disappeared in the Last 50 Years". All About Birds. Retrieved 5 May 2024.
- ISBN 978-0-521-78949-3.
- .
- S2CID 26320497.
- S2CID 31211118.
- .
- .
Further reading
- All the Birds of the World, Lynx Edicions, 2020.
- Del Hoyo, Josep; Elliott, Andrew; Sargatal, Jordi (eds.). Handbook of the Birds of the World (17-volume encyclopaedia), Lynx Edicions, Barcelona, 1992–2010. (Vol. 1: Ostrich to Ducks: ISBN 978-84-87334-10-8, etc.).
- Lederer, Roger; Carol Burr (2014). Latein für Vogelbeobachter: über 3000 ornithologische Begriffe erklärt und erforscht, aus dem Englischen übersetzt von Susanne Kuhlmannn-Krieg, Verlag DuMont, Köln, ISBN 978-3-8321-9491-8.
- National Geographic Field Guide to Birds of North America, National Geographic, 7th edition, 2017. ISBN 9781426218354
- National Audubon Society Field Guide to North American Birds: Eastern Region, National Audubon Society, Knopf.
- National Audubon Society Field Guide to North American Birds: Western Region, National Audubon Society, Knopf.
- Svensson, Lars (2010). Birds of Europe, Princeton University Press, second edition. ISBN 9780691143927
- Svensson, Lars (2010). Collins Bird Guide: The Most Complete Guide to the Birds of Britain and Europe, Collins, 2nd edition. ISBN 978-0007268146
External links
- Birdlife International – Dedicated to bird conservation worldwide; has a database with about 250,000 records on endangered bird species.
- Bird biogeography
- Birds and Science from the National Audubon Society
- Cornell Lab of Ornithology
- "Bird" at the Encyclopedia of Life
- Essays on bird biology
- North American Birds for Kids Archived 9 August 2010 at the Wayback Machine
- Ornithology
- Sora – Searchable online research archive; Archives of the following ornithological journals Wilson Bulletin.
- The Internet Bird Collection – A free library of videos of the world's birds
- The Institute for Bird Populations, California
- List of field guides to birds, from the International Field Guides database
- RSPB bird identifier Archived 5 November 2013 at the Wayback Machine – Interactive identification of all UK birds
- Are Birds Really Dinosaurs? — University of California Museum of Paleontology.