Busemann–Petty problem

Source: Wikipedia, the free encyclopedia.

In the mathematical field of convex geometry, the Busemann–Petty problem, introduced by Herbert Busemann and Clinton Myers Petty (1956, problem 1), asks whether it is true that a symmetric convex body with larger central hyperplane sections has larger volume. More precisely, if K, T are symmetric convex bodies in Rn such that

for every hyperplane A passing through the origin, is it true that Voln K ≤ Voln T?

Busemann and Petty showed that the answer is positive if K is a ball. In general, the answer is positive in dimensions at most 4, and negative in dimensions at least 5.

History

Larman and

intersection bodies
, and showed that the Busemann–Petty problem has a positive solution in a given dimension if and only if every symmetric convex body is an intersection body. An intersection body is a star body whose radial function in a given direction u is the volume of the hyperplane section u ∩ K for some fixed star body K.
lp norm are intersection bodies for n = 4 but are not intersection bodies for n ≥ 5, showing that Zhang's result was incorrect. Zhang (1999
) then showed that the Busemann–Petty problem has a positive solution in dimension 4. Richard J. Gardner, A. Koldobsky, and T. Schlumprecht (1999) gave a uniform solution for all dimensions.

See also

References