Chemical oxygen iodine laser

Source: Wikipedia, the free encyclopedia.

A chemical oxygen iodine laser (COIL) is a near–infrared chemical laser. As the beam is infrared, it cannot be seen with the naked eye. It is capable of output power scaling up to megawatts in continuous mode.[citation needed] Its output wavelength is 1315 nm, a transition wavelength of atomic iodine.

YAL-1 Airborne Laser
.

Principles of operation

The laser is fed with gaseous

optical resonator
region of the laser. ( the upper and lower iodine atomic states are reversed with the 2P1/2 being the upper state)

The laser operates at relatively low gas pressures, but the gas flow has to be nearing the speed of sound at the reaction time; even supersonic flow designs are described. The low pressure and fast flow make removal of heat from the lasing medium easy, in comparison with high-power solid-state lasers. The reaction products are potassium chloride, water, and oxygen. Traces of chlorine and iodine are removed from the exhaust gases by a halogen scrubber.

History and applications

COIL was developed by the

hastelloy with a fiber-coupled COIL has been demonstrated.[1] In 1996, TRW Incorporated managed to get a continuous beam of hundreds of kilowatts of power that lasted for several seconds.[citation needed
]

RADICL, Research Assessment, Device Improvement Chemical Laser, is a 20 kW COIL laser tested by the United States Air Force in around 1998.[2]

COIL is a component of the United States' military

advanced tactical laser programs. On February 11, 2010, this weapon was successfully deployed to shoot down a missile off the central California coast in a test conducted with a laser aboard a Boeing 747 that took off from the Point Mugu Naval Air Warfare Center (for more details, see Boeing YAL-1).[3]

Other iodine based lasers

All gas-phase iodine laser (AGIL) is a similar construction using all-gas reagents, more suitable for aerospace applications.

The ElectricOIL, or EOIL, offers the same iodine lasing species in an alternate gas-electric hybrid variant.

See also

References

  1. ^ "Cutting performance of a chemical oxygen-iodine laser on aerospace and industrial materials". Jla.aip.org. 2006-06-16. Archived from the original on 2013-07-20. Retrieved 2014-04-25.
  2. ^ "COIL Systems Offer Optimum". www.spie.org. Archived from the original on 2003-03-09. Retrieved 2008-05-10. (via Google cache)
  3. ^ "AP US Missile Defense Test". The New York Times. [dead link]

External links