Closed geodesic

Source: Wikipedia, the free encyclopedia.

In

dynamical systems, a closed geodesic on a Riemannian manifold is a geodesic that returns to its starting point with the same tangent direction. It may be formalized as the projection of a closed orbit of the geodesic flow on the tangent space
of the manifold.

Definition

In a Riemannian manifold (M,g), a closed geodesic is a curve that is a geodesic for the metric g and is periodic.

Closed geodesics can be characterized by means of a variational principle. Denoting by the space of smooth 1-periodic curves on M, closed geodesics of period 1 are precisely the critical points of the energy function , defined by

If is a closed geodesic of period p, the reparametrized curve is a closed geodesic of period 1, and therefore it is a critical point of E. If is a critical point of E, so are the reparametrized curves , for each , defined by . Thus every closed geodesic on M gives rise to an infinite sequence of critical points of the energy E.

Examples

On the unit sphere with the standard round Riemannian metric, every

surface, whose fundamental group has no torsion, closed geodesics are in one-to-one correspondence with non-trivial conjugacy classes of elements in the Fuchsian group
of the surface.

See also

References

  • Besse, A.: "Manifolds all of whose geodesics are closed", Ergebisse Grenzgeb. Math., no. 93, Springer, Berlin, 1978.