Dragonfly Telephoto Array

Source: Wikipedia, the free encyclopedia.

The Dragonfly Telephoto Array is a ground-based

extragalactic objects.[1]
Its main purpose is to take images of ultra-low surface brightness galaxies at visible wavelengths of light. It is well suited for this purpose because its lenses have specially-coated optical glass that reduces scattered light.

Design

A Canon EF 400mm f/2.8L IS II USM lens, the model used in the array

The telescope was designed by Roberto Abraham of the University of Toronto and Pieter van Dokkum of Yale University.[2] It was commissioned in 2013[1] and initially had eight commercially available Canon EF 400mm f/2.8L IS II USM camera lenses.[3] This was first increased to ten lenses, and was extended to two clusters of 24 lenses each in 2016.[4][5][6] The array is designed to accommodate the addition of lenses to increase its effective aperture with each additional lens.[3]

With 48 lenses, the instrument has a light gathering power equivalent to a 400 mm f/0.4 lens, or a refracting telescope with an objective lens diameter of 990 mm (39 in). In March 2021 plans were announced to add 120 more lenses.[7]

By using a lens based refactor design rather than a mirror based reflector design the telescope suffers less from issues introduced by diffraction and light scattering.[8] Reflector designs have more light scattering due to interactions with dust and any slight roughness on the mirror.[8] Issues with diffraction occur due to the need to place obstructions in the optical path of reflecting telescopes.[8]

Research

Astronomers used the Dragonfly Telephoto Array to discover Dragonfly 44, a galaxy that is roughly as massive as the Milky Way, with 99.9% of its mass composed of dark matter.[9] At the other end of the scale it was also used to discover NGC 1052-DF2, which measurements with other instruments initially suggested was a galaxy with very little dark matter.[10] Further work indicated that NGC 1052-DF2 was closer to the earth than previous thought.[11] If this is the case then the galaxy would appear to contain a typical amount of dark matter. Though this distance debate was continued and rebutted by a follow up observation which measured the tip of the red-giant branch distance to NGC 1052-DF2 using Hubble Space Telescope, confirming the earlier surface brightness fluctuation measurements and resolving the ambiguous distance.[12]

References

  1. ^ a b "Dragonfly - Dunlap Institute". Dunlap Institute for Astronomy and Astrophysics. Retrieved 5 March 2018.
  2. ^ "A New Kind of Telescope". University of Toronto Magazine. April 2015. Retrieved 29 May 2020.
  3. ^
    S2CID 119197160
    .
  4. ^ "How Do You Make A Galaxy Without Dark Matter?". Dunlap Institute for Astronomy and Astrophysics. Retrieved 15 Apr 2019.
  5. ^ Estes, Adam C. (14 July 2014). "Astronomers Invent New Telescope by Tying Telephoto Lenses Together". Gizmodo. Retrieved 5 March 2018.
  6. ^ "Dragonfly - Yale University". Retrieved 5 March 2018.
  7. ^ Lens array captures dim objects missed by giant telescopes, Science, Vol 371 p1301 26 March 2021
  8. ^ a b c Jielai Zhang (2018). The Development and Scientific Application of the Dragonfly Telephoto Array (PDF) (PhD). University of Toronto. p. 10.
  9. ^ "Meet Dragonfly 44, the galaxy made of 99.9% dark matter". Wired UK. Wired. Retrieved 5 March 2018.
  10. S2CID 4460376
    .
  11. . Retrieved 5 June 2019.
  12. .

External links