E-graph

Source: Wikipedia, the free encyclopedia.

In computer science, an e-graph is a data structure that stores an equivalence relation over terms of some language.

Definition and operations

Let be a set of uninterpreted functions, where is the subset of consisting of functions of arity . Let be a countable set of opaque identifiers that may be compared for equality, called e-class IDs. The application of to e-class IDs is denoted and called an e-node.

The e-graph then represents equivalence classes of e-nodes, using the following data structures:[1]

  • A union-find structure representing equivalence classes of e-class IDs, with the usual operations , and . An e-class ID is canonical if ; an e-node is canonical if each is canonical ( in ).
  • An association of e-class IDs with sets of e-nodes, called e-classes. This consists of
    • a hashcons (i.e. a mapping) from canonical e-nodes to e-class IDs, and
    • an e-class map that maps e-class IDs to e-classes, such that maps equivalent IDs to the same set of e-nodes:

Invariants

In addition to the above structure, a valid e-graph conforms to several data structure invariants.[2] Two e-nodes are equivalent if they are in the same e-class. The congruence invariant states that an e-graph must ensure that equivalence is closed under congruence, where two e-nodes are congruent when . The hashcons invariant states that the hashcons maps canonical e-nodes to their e-class ID.

Operations

E-graphs expose wrappers around the , , and operations from the union-find that preserve the e-graph invariants. The last operation, e-matching, is described below.

E-matching

Let be a set of variables and let be the smallest set that includes the 0-arity function symbols (also called constants), includes the variables, and is closed under application of the function symbols. In other words, is the smallest set such that , , and when and , then . A term containing variables is called a pattern, a term without variables is called ground.

An e-graph represents a ground term if one of its e-classes represents . An e-class represents if some e-node does. An e-node represents a term if and each e-class represents the term ( in ).

e-matching is an operation that takes a pattern and an e-graph , and yields all pairs where is a substitution mapping the variables in to e-class IDs and is an e-class ID such that each term is represented by . There are several known algorithms for e-matching,[3][4] the relational e-matching algorithm is based on worst-case optimal joins and is worst-case optimal.[5]

Complexity

  • An e-graph with n equalities can be constructed in O(n log n) time.[6]

Equality saturation

Equality saturation is a technique for building optimizing compilers using e-graphs.[7] It operates by applying a set of rewrites using e-matching until the e-graph is saturated, a timeout is reached, an e-graph size limit is reached, a fixed number of iterations is exceeded, or some other halting condition is reached. After rewriting, an optimal term is extracted from the e-graph according to some cost function, usually related to AST size or performance considerations.

Applications

E-graphs are used in

empty theory by computing the congruence closure of a set of equalities, and e-matching is used to instantiate quantifiers.[9] In DPLL(T)-based solvers that use conflict-driven clause learning (also known as non-chronological backtracking), e-graphs are extended to produce proof certificates.[10] E-graphs are also used in the Simplify theorem prover of ESC/Java.[11]

Equality saturation is used in specialized

translation validation applied to the LLVM toolchain.[15]

E-graphs have been applied to several problems in program analysis, including fuzzing,[16] abstract interpretation,[17][18] and library learning.[19]

References

External links