Endogeneity (econometrics)

Source: Wikipedia, the free encyclopedia.

In

Instrumental variable
techniques are commonly used to mitigate this problem.

Besides simultaneity, correlation between explanatory variables and the error term can arise when an unobserved or

measured with error.[4]

Exogeneity versus endogeneity

In a

stochastic model
, the notion of the usual exogeneity, sequential exogeneity, strong/strict exogeneity can be defined. Exogeneity is articulated in such a way that a variable or variables is exogenous for parameter . Even if a variable is exogenous for parameter , it might be endogenous for parameter .

When the explanatory variables are not stochastic, then they are strong exogenous for all the parameters.

If the

.

Static models

The following are some common sources of endogeneity.

Omitted variable

In this case, the endogeneity comes from an uncontrolled

confounding variable
, a variable that is correlated with both the independent variable in the model and with the error term. (Equivalently, the omitted variable affects the independent variable and separately affects the dependent variable.)

Assume that the "true" model to be estimated is

but is omitted from the regression model (perhaps because there is no way to measure it directly). Then the model that is actually estimated is

where (thus, the term has been absorbed into the error term).

If the correlation of and is not 0 and separately affects (meaning ), then is correlated with the error term .

Here, is not exogenous for and , since, given , the distribution of depends not only on and , but also on and .

Measurement error

Suppose that a perfect measure of an independent variable is impossible. That is, instead of observing , what is actually observed is where is the measurement error or "noise". In this case, a model given by

can be written in terms of observables and error terms as

Since both and depend on , they are correlated, so the OLS estimation of will be biased downward.

Measurement error in the dependent variable, , does not cause endogeneity, though it does increase the variance of the error term.

Simultaneity

Suppose that two variables are codetermined, with each affecting the other according to the following "structural" equations:

Estimating either equation by itself results in endogeneity. In the case of the first structural equation, . Solving for while assuming that results in

.

Assuming that and are uncorrelated with ,

.

Therefore, attempts at estimating either structural equation will be hampered by endogeneity.

Dynamic models

The endogeneity problem is particularly relevant in the context of

endogenous
over time.

Let the model be y = f(xz) + u. If the variable x is sequential exogenous for parameter , and y does not cause x in the Granger sense, then the variable x is strongly/strictly exogenous for the parameter .

Simultaneity

Generally speaking, simultaneity occurs in the dynamic model just like in the example of static simultaneity above.

See also

Footnotes

  1. exogenous change on the demand curve
    .

References

Further reading