Equifinality

Source: Wikipedia, the free encyclopedia.

Equifinality is the principle that in

trajectories
.

In closed systems, a direct cause-and-effect relationship exists between the initial condition and the final state of the system: When a computer's 'on' switch is pushed, the system powers up. Open systems (such as biological and social systems), however, operate quite differently. The idea of equifinality suggests that similar results may be achieved with different initial conditions and in many different ways.[1] This phenomenon has also been referred to as isotelesis[2] (from Greek ἴσος isos "equal" and τέλεσις telesis: "the intelligent direction of effort toward the achievement of an end") when in games involving superrationality.

Overview

In business, equifinality implies that firms may establish similar competitive advantages based on substantially different competencies.

In

psychological disorder
.

In archaeology, equifinality refers to how different historical processes may lead to a similar outcome or social formation. For example, the development of agriculture or the bow and arrow occurred independently in many different areas of the world, yet for different reasons and through different historical trajectories. This highlights that generalizations based on cross-cultural comparisons cannot be made uncritically.

In

GLUE method that was the first generalised method for uncertainty assessment in hydrological modeling.[4] GLUE is now widely used within and beyond environmental
modeling.

See also

References

  1. ^ Cummings & Worley, Organization Development & Change, Thomson, 2005, p. 87.
  2. ^ R.B. Zajonc, Feeling and Facial Efference: Implications of the Vascular Theory of Emotion. 1989, p. 16 http://psychology.stanford.edu/~lera/273/zajonc-psychreview-1989.pdf Archived 2007-06-10 at the Wayback Machine
  3. ^
    S2CID 198397645
    .
  4. .
  5. ^ Jim E Freer, Keith J Beven(2001). Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. Journal of Hydrology (2001) Volume: 249, Issue: 1–4, pp. 11–29

Publications

  • Bertalanffy, Ludwig von, General Systems Theory, 1968
  • Beven, K.J. and Binley, A.M., 1992. The future of distributed models: model calibration and uncertainty prediction, Hydrological Processes, 6, pp. 279–298.
  • Beven, K.J. and Freer, J., 2001a. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems, Journal of Hydrology, 249, 11–29.
  • Croft, Gary W., Glossary of Systems Theory and Practice for the Applied Behavioral Sciences, Syntropy Incorporated, Freeland, WA, Prepublication Review Copy, 1996
  • Durkin, James E. (ed.), Living Groups: Group Psychotherapy and General System Theory, Brunner/Mazel, New York, 1981
  • Mash, E. J., & Wolfe, D. A. (2005). Abnormal Child Psychology (3rd edition). Wadsworth Canada. pp. 13–14.
  • Weisbord, Marvin R., Productive Workplaces: Organizing and Managing for Dignity, Meaning, and Community, Jossey-Bass Publishers, San Francisco, 1987
  • Tang, J.Y. and Zhuang, Q. (2008). Equifinality in parameterization of process-based biogeochemistry models: A significant uncertainty source to the estimation of regional carbon dynamics, J. Geophys. Res., 113, G04010.