Fermat polygonal number theorem

Source: Wikipedia, the free encyclopedia.

In additive number theory, the Fermat polygonal number theorem states that every positive integer is a sum of at most n n-gonal numbers. That is, every positive integer can be written as the sum of three or fewer triangular numbers, and as the sum of four or fewer square numbers, and as the sum of five or fewer pentagonal numbers, and so on. That is, the n-gonal numbers form an additive basis of order n.

Examples

Three such representations of the number 17, for example, are shown below:

  • 17 = 10 + 6 + 1 (triangular numbers)
  • 17 = 16 + 1 (square numbers)
  • 17 = 12 + 5 (pentagonal numbers).

History

Gauss's diary entry related to sum of triangular numbers (1796)

The theorem is named after Pierre de Fermat, who stated it, in 1638, without proof, promising to write it in a separate work that never appeared.[1]

Cauchy in 1813.[1] The proof of Nathanson (1987)
is based on the following lemma due to Cauchy:

For odd positive integers a and b such that b2 < 4a and 3a < b2 + 2b + 4 we can find nonnegative integers s, t, u, and v such that a = s2 + t2 + u2 + v2 and b = s + t + u + v.

See also

Notes

References