GNSS reflectometry

Source: Wikipedia, the free encyclopedia.
GNSS-R system diagram

GNSS reflectometry (or GNSS-R) involves making measurements from the reflections from the Earth of navigation signals from

NASA Langley Research Center[1]
and is also known as GPS reflectometry. Research applications of GNSS-R are found in

GNSS reflectometry is passive sensing that takes advantage of and relies on separate active sources - the satellites generating the navigation signals. For this, the GNSS receiver measures the signal delay from the satellite (the pseudorange measurement) and the rate of change of the range between satellite and observer (the Doppler measurement). The surface area of the reflected GNSS signal also provides the two parameters time delay and frequency change. As a result, the Delay Doppler Map (DDM) can be obtained as GNSS-R observable. The shape and power distribution of the signal within the DDM is dictated by two reflecting surface conditions: its dielectric properties and its roughness state. Further derivation of geophysical information rely on these measurements.

GNSS reflectometry works as a

Surrey Satellite Technology Ltd. It carried a secondary reflectometry payload that has demonstrated the feasibility of receiving and measuring GPS signals reflected from the surface of the Earth's oceans from its track in low Earth orbit to determine wave motion and windspeed.[4][7]

See also

  • Cyclone Global Navigation Satellite System (CYGNSS)

References

Further reading

External links