Geometrography

In the mathematical field of geometry, geometrography is the study of geometrical constructions.[1] The concepts and methods of geometrography were first expounded by Émile Lemoine (1840–1912), a French civil engineer and a mathematician, in a meeting of the French Association for the Advancement of the Sciences held at Oran in 1888. [1] Lemoine later expanded his ideas in another memoir read at the Pau meeting of the same Association held in 1892.[2]
It is well known in
Basic ideas
In developing the ideas of geometrography, Lemoine restricted himself to
Elementary operations in a geometrical construction
Sl. No. | Operation | Notation for operation |
---|---|---|
1 | To place the edge of the ruler in coincidence with a point | R1 |
2 | To draw a straight line |
R2 |
3 | To put a point of the compasses on a determinate point | C1 |
4 | To put a point of the compasses on an indeterminate point of a line | C2 |
5 | To describe a circle | C3 |
In a geometrical construction the fact that an operation X is to be done n times is denoted by the expression nX. The operation of placing a ruler in coincidence with two points is indicated by 2R1. The operation of putting one point of the compasses on a determinate point and the other point of the compasses on another determinate point is 2C1.
Every geometrical construction can be represented by an expression of the following form
- l1R1 + l2R2 + m1C1 + m2C2 + m3C3.
Here the coefficients l1, etc. denote the number of times any particular operation is performed.
Coefficient of simplicity
The number l1 + l2 + m1 +m2 + m3 is called the coefficient of simplicity, or the simplicity of the construction. It denotes the total number of operations.
Coefficient of exactitude
The number l1 + m1 + m2 is called the coefficient of exactitude, or the exactitude of the construction; it denotes the number of preparatory operations, on which the exactitude of the construction depends.
Examples
Lemoine applied his scheme to analyze more than sixty problems in elementary geometry.[1]
- The construction of a triangle given the three vertices can be represented by the expression 4R1 + 3R2.
- A certain construction of the regular heptadecagon involving the Carlyle circles can be represented by the expression 8R1 + 4R2 + 22C1 + 11C3 and has simplicity 45.[3]
References
- ^ . Retrieved 5 November 2011.
- ^ Lemoine, Émile. "Géométrographie ou Art des constructions géométriques". Gallica Bibliotheque Numerique. Retrieved 5 November 2011.
- ^ Weisstein, Eric W. "Heptadecagon." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Heptadecagon.html
Further reading
- Hess, Adrien L (Mar–Apr 1956). "Certain topics related to constructions with straight edge and compasses". Mathematics Magazine. 29 (4): 217–221. JSTOR 3029638.
- Newton, Guy Thornwel (1926). Geometrography with applications to the instruments of the draftsman. University of Texas. p. 190.
- DeTemple, Duane W. (Feb 1991). "Carlyle circles and Lemoine simplicity of polygon constructions" (PDF). The American Mathematical Monthly. 98 (2): 97–208. JSTOR 2323939. Archived from the original(PDF) on 2015-12-21. Retrieved 6 November 2011.