Indirect DNA damage

Source: Wikipedia, the free encyclopedia.


Indirect DNA damage: The chromophore absorbs UV-light (* denotes an excited state), and the energy of the excited state is creating singlet oxygen (1O2) or a hydroxyl radical (•OH), which then damages DNA through oxidation.[1]

Indirect DNA damage occurs when a

sunscreens such as menthyl anthranilate, avobenzone or padimate O is 1,000 to 1,000,000 times longer than that of melanin,[2] and therefore they may cause damage to living cells that come in contact with them.[4][5][6][7]

The molecule that originally absorbs the UV-photon is called a "chromophore". Bimolecular reactions can occur either between the excited chromophore and DNA or between the excited chromophore and another species, to produce

free radicals and reactive oxygen species. These reactive chemical species can reach DNA by diffusion and the bimolecular reaction damages the DNA (oxidative stress
). It is important to note that, unlike direct DNA damage which causes sunburn, indirect DNA damage does not result in any warning signal or pain in the human body.

The bimolecular reactions that cause the indirect DNA damage are illustrated in the figure:

1O2 is reactive harmful singlet oxygen:

[1]

Location of the damage

Unlike

squamous cell carcinoma, which appear only on directly illuminated locations on the body. [dubious ] [citation needed
]

See also

References

  1. ^
    S2CID 9807925
    .
  2. ^ a b c Cantrell, Ann; McGarvey, David J (2001). "3(Sun Protection in Man)". Comprehensive Series in Photosciences. 495: 497–519. CAN 137:43484.
  3. ^ "Ultrafast internal conversion of DNA". Archived from the original on 2008-06-05. Retrieved 2008-02-13.
  4. PMID 15363592
    .
  5. .
  6. .
  7. .