Integrated standby instrument system

Source: Wikipedia, the free encyclopedia.

An integrated standby instrument system (ISIS) is an electronic aircraft instrument. It is intended to serve as backup in case of a failure of the standard

airliners to helicopters and smaller general aviation
aircraft. While it is common for new-built aircraft to be outfitted with ISIS, numerous operators have opted to have their fleets retrofitted with such apparatus as well.

Details

An ISIS is designed to combine the functions of separate equivalent mechanical instruments that had previously been included as backup in such cockpits, including

battery unit), as well as harnessing embedded sensors for its readings wherever possible.[1][2] When all onboard instrumentation is performing normally, the readings indicated by an ISIS are identical to that of the primary flight display.[3] Advantages presented by ISIS over traditional systems include improved safety, greater ease of operation, and reduced operating costs.[4]

A number of aircraft have been produced with relatively sophisticated integrated standby systems which may include additional functions. For example, the

GE Aviation, Smiths Group, and Meggitt, have also marketed ranges of standby instrumentation using both standalone and ISIS-compliance principles.[11][12][13]

Several companies have produced

Airbus Group.[14] In addition to such technology being adopted upon new-build aircraft, several operators have opted to retrofit their existing aircraft fleets with current generation ISIS, such as UPS's Airbus A300 freighters.[15] Along these lines, Rockwell Collins developed a retrofit package for the Boeing 757 and Boeing 767 that incorporates ISIS.[16] During the 2010s, the cost of performing such cockpit display retrofits reportedly dropped substantially.[17]

See also

References

  1. . Retrieved 8 July 2012.
  2. S2CID 17045514.{{cite book}}: CS1 maint: multiple names: authors list (link
    )
  3. ^ a b "ESI-500". l3commercialaviation.com. Retrieved 29 July 2020.
  4. ^ "Pilot's Guide for the Electronic Standby Instrument System: Model GH-3100" (PDF). silviopini.ch. Retrieved 29 July 2020.
  5. ^ "Pro Line Fusion®". Rockwell Collins. Retrieved 29 July 2020.
  6. ^ "Operational Suitability Data (OSD)" (PDF). support.cessna.com. Retrieved 29 July 2020.
  7. ^ "Integrated Standby Instrument System". a320simulator.be. Retrieved 3 February 2019.
  8. ^ "Airworthiness Directive: Airbus Industrie A330 Series Aeroplanes" (PDF). services.casa.gov.au. 1998.
  9. ^ "Integrated Electronic Standby Instrument Fully featured for helicopters - IESI". Thales Group. Retrieved 29 July 2020.
  10. ^ "L-3 Avionics Intros Glass Standby Instrument For Part 23 Aircraft". aero-news.net. 6 August 2008.
  11. ^ "Avionics". geaviation.com. Retrieved 29 July 2020.
  12. ^ "integrated Secondary Flight Display (iSFD)" (PDF). meggitt-avionics.co.uk. Retrieved 29 July 2020.
  13. ^ "Chinese opt for Smiths instrument standby". Flight International. 19 July 2004.
  14. ^ "US7415330B2: Aircraft standby display device and system". 2004.
  15. ^ Bellamy III, Woodrow (16 May 2017). "UPS Brings Epic Avionics to Airbus A300s". aviationtoday.com.
  16. ^ "767/757 Large Format Display System Flight Deck Retrofit". rockwellcollins.com. Retrieved 29 July 2020.
  17. ^ "What Pilots Need to Know about Retrofit Avionics". flyingmag.com. Retrieved 4 June 2020.

External links