Irrational rotation

Source: Wikipedia, the free encyclopedia.
Sturmian sequence generated by irrational rotation with theta=0.2882748715208621 and x=0.078943143

In the mathematical theory of dynamical systems, an irrational rotation is a map

where θ is an

periodic orbits
.

Alternatively, we can use multiplicative notation for an irrational rotation by introducing the map

The relationship between the additive and multiplicative notations is the group isomorphism

.

It can be shown that φ is an isometry.

There is a strong distinction in circle rotations that depends on whether θ is rational or irrational. Rational rotations are less interesting examples of dynamical systems because if and , then when . It can also be shown that when .

Significance

Irrational rotations form a fundamental example in the theory of

ergodic transformation, but it is not mixing. The Poincaré map for the dynamical system associated with the Kronecker foliation on a torus with angle θ> is the irrational rotation by θ. C*-algebras associated with irrational rotations, known as irrational rotation algebras
, have been extensively studied.

Properties

Generalizations

  • Circle rotations are examples of
    group translations
    .
  • For a general orientation preserving homomorphism f of S1 to itself we call a homeomorphism a lift of f if where .[1]
  • The circle rotation can be thought of as a subdivision of a circle into two parts, which are then exchanged with each other. A subdivision into more than two parts, which are then permuted with one-another, is called an interval exchange transformation.
  • Rigid rotations of compact groups effectively behave like circle rotations; the invariant measure is the Haar measure.

Applications

  • Skew Products over Rotations of the Circle: In 1969[2] William A. Veech constructed examples of minimal and not uniquely ergodic dynamical systems as follows: "Take two copies of the unit circle and mark off segment J of length 2πα in the counterclockwise direction on each one with endpoint at 0. Now take θ irrational and consider the following dynamical system. Start with a point p, say in the first circle. Rotate counterclockwise by 2πθ until the first time the orbit lands in J; then switch to the corresponding point in the second circle, rotate by 2πθ until the first time the point lands in J; switch back to the first circle and so forth. Veech showed that if θ is irrational, then there exists irrational α for which this system is minimal and the Lebesgue measure is not uniquely ergodic."[3]

See also

References

  1. ^ Fisher, Todd (2007). "Circle Homomorphisms" (PDF).
  2. ^
    PMID 16591677
    .
  3. ^ Masur, Howard; Tabachnikov, Serge (2002). "Rational Billiards and Flat Structures". In Hasselblatt, B.; Katok, A. (eds.). Handbook of Dynamical Systems (PDF). Vol. IA. Elsevier.

Further reading

  • C. E. Silva, Invitation to ergodic theory, Student Mathematical Library, vol 42,