John H. Malmberg

Source: Wikipedia, the free encyclopedia.
John Holmes Malmberg
non-neutral plasma research, Penning–Malmberg trap
, collisionless damping of plasma waves, plasma wave echo
Awards
Scientific career
Fields
Plasma physics
InstitutionsGeneral Atomics, University of California, San Diego

John Holmes Malmberg (July 5, 1927 – November 1, 1992) was an American plasma

non-neutral plasmas and the development of the Penning–Malmberg trap.[3][4]

In 1985, Malmberg won the

Early life and career

Malmberg studied at

In 1980, Malmberg was appointed to the first Plasma Sciences Committee of the

] In that capacity, he was a strong voice for the importance of basic plasma experiments in maintaining the health of plasma science. In an era when small-scale and basic plasma physics research was nearing an ebb, Malmberg emphasized the importance of being able to follow the internal logic of the science, which he believed to be of paramount importance in doing basic research.

Scientific contributions

Landau damping of plasma waves

Malmberg and Charles Wharton made the first experimental measurements of

free energy and phase-space memory associated with the damped wave are not lost, but are subtly stored in the plasma. Malmberg and collaborators demonstrated explicitly the reversible nature of this process by observation of the plasma wave echo[9][10]
in which a wave “spontaneously” appears in the plasma as an ‘echo’ of two previously launched waves that had been Landau damped.

Penning–Malmberg traps and non-neutral plasmas

Neutral plasmas are notoriously difficult to confine. In contrast, Malmberg and collaborators predicted and demonstrated experimentally[3][4][11] that plasmas with a single sign of charge, such as pure electron or pure ion plasmas, can be confined for long periods (e.g., hours). This was accomplished using an arrangement of electric and magnetic fields similar to that of a Penning trap, but optimized to confine single-component plasmas. In recognition of Malmberg’s contributions to the development of these devices, they are now referred to as Penning–Malmberg traps.

Malmberg and collaborators, realized that

non-neutral plasmas offer research opportunities not available with neutral plasmas. In contrast to neutral plasmas, plasmas with a single sign of charge can reach states of global thermal equilibria.[12][13] The possibility of using thermal equilibrium statistical mechanics to describe the plasma provides a large advantage to theory. [14]
Furthermore, states near such thermal equilibria can be more easily controlled experimentally and departures from equilibrium studied with precision.

When a neutral plasma is cooled, it simply

recombines; but a plasma with a single sign of charge can be cooled without recombination. Malmberg constructed a trap for a pure electron plasma with walls at 4.2 K. Cyclotron radiation from the electrons then cooled the plasma to a few Kelvin. Theory argued that electron-electron collisions in such a strongly magnetized and low temperature plasma would be qualitatively different than those in warmer plasmas. Malmberg measured the equipartition rate between electron velocity components parallel to and perpendicular to the magnetic field and confirmed the striking prediction that it decreases exponentially with decreasing temperature.[15]

Malmberg and

vortex dynamics expected for an ideal fluid.[18][19]

In the late 1980s, pure positron (i.e., antielectron) plasmas were created using the Penning–Malmberg trap technology.[20] This, and advances in confining low-energy antiprotons,[21] led to the creation of low-energy antihydrogen a decade later.[22][23] These and subsequent developments[24][25] have spawned a wealth of research with low-energy antimatter.[26] This includes ever more precise studies of antihydrogen and comparison with the properties of hydrogen[27] and formation of the di-positronium molecule (Ps, )[28] predicted by J. A. Wheeler in 1946.[29] The Penning–Malmberg trap technology is now being used to create a new generation of high-quality positroniumatom () beams for atomic physics studies.[30][31]

In the broader view, Malmberg’s seminal studies with trapped single-component and non-neutral plasmas have stimulated vibrant sub-fields of plasma physics with surprisingly broad impacts in the wider world of physics.

Honors and awards

In 1985, Malmberg received the James Clerk Maxwell Prize for Plasma Physics from the American Physical Society for "his outstanding experimental studies which expanded our understanding of wave-particle interactions in neutral plasmas and increased our confidence in plasma theory; and for his pioneering studies of the confinement and transport of pure electron plasmas".[5]

And in 1991, he was co-awarded the

John Dawson Award for Excellence in Plasma Physics Research with Charles F. Driscoll and Thomas Michael O'Neil, for their studies of single-component electron plasmas.[6]

Legacy

In 1993, the UCSD physics department established the John Holmes Malmberg Prize in his honor. It is awarded annually to an outstanding undergraduate physics major with interests in experimental physics.[32]

References

  1. ^ a b "Plasma Physics Pioneer at UCSD Dies". Los Angeles Times. 1992-11-24. Retrieved 2020-02-23.
  2. ^ .
  3. ^ .
  4. ^ .
  5. ^ a b "1985 James Clerk Maxwell Prize for Plasma Physics Recipient". American Physical Society. Retrieved 2020-02-23.
  6. ^ a b "John Dawson Award for Excellence in Plasma Physics Research". www.aps.org. Retrieved 2020-02-23.
  7. ^ "Malmberg, J. H." history.aip.org. Retrieved 2020-02-23.
  8. ^ Landau, L. D. "On the vibrations of the electronic plasma". Zh. Eksp. Teor. Fiz. 16: 574–86 (reprinted 1965 Collected Papers of Landau ed D ter Haar (Oxford: Pergamon) pp 445–60).
  9. .
  10. .
  11. .
  12. .
  13. .
  14. .
  15. .
  16. .
  17. .
  18. .
  19. .
  20. .
  21. .
  22. .
  23. .
  24. .
  25. .
  26. .
  27. .
  28. .
  29. .
  30. .
  31. .
  32. ^ "UC San Diego | Fellowships and Awards in Physics". www-physics.ucsd.edu. Retrieved 2020-02-23.