Kodaira vanishing theorem

Source: Wikipedia, the free encyclopedia.

In

holomorphic Euler characteristic that can be computed using the Hirzebruch–Riemann–Roch theorem
.

The complex analytic case

The statement of

, then

for q > 0. Here stands for the

, one also obtains the vanishing of for q < n. There is a generalisation, the Kodaira–Nakano vanishing theorem, in which , where Ωn(L) denotes the sheaf of
holomorphic (n,0)-forms
on M with values on L, is replaced by Ωr(L), the sheaf of holomorphic (r,0)-forms with values on L. Then the cohomology group Hq(M, Ωr(L)) vanishes whenever q + r > n.

The algebraic case

The Kodaira vanishing theorem can be formulated within the language of algebraic geometry without any reference to transcendental methods such as Kähler metrics. Positivity of the line bundle L translates into the corresponding invertible sheaf being ample (i.e., some tensor power gives a projective embedding). The algebraic Kodaira–Akizuki–Nakano vanishing theorem is the following statement:

If k is a
projective k-scheme
of dimension d, and L is an ample invertible sheaf on X, then
where the Ωp denote the ).

Raynaud (1978) showed that this result does not always hold over fields of characteristic p > 0, and in particular fails for Raynaud surfaces. Later Sommese (1986) give a counterexample for singular varieties with non-log canonical singularities,[1] and also,Lauritzen & Rao (1997) gave elementary counterexamples inspired by proper homogeneous spaces with non-reduced stabilizers.

Until 1987 the only known proof in characteristic zero was however based on the complex analytic proof and the

algebraic de Rham cohomology
degenerates in degree 1. This is shown by lifting a corresponding more specific result from characteristic p > 0 — the positive-characteristic result does not hold without limitations but can be lifted to provide the full result.

Consequences and applications

Historically, the Kodaira embedding theorem was derived with the help of the vanishing theorem. With application of Serre duality, the vanishing of various sheaf cohomology groups (usually related to the canonical line bundle) of curves and surfaces help with the classification of complex manifolds, e.g. Enriques–Kodaira classification.

See also

Note

  1. ^ (Fujino 2009, Proposition 2.64)

References

  • Deligne, Pierre; Illusie, Luc (1987), "Relèvements modulo p2 et décomposition du complexe de de Rham", Inventiones Mathematicae, 89 (2): 247–270,
    S2CID 119635574
  • Esnault, Hélène; Viehweg, Eckart (1992), Lectures on vanishing theorems (PDF), DMV Seminar, vol. 20, Birkhäuser Verlag,
  • Phillip Griffiths and Joseph Harris, Principles of Algebraic Geometry
  • Kodaira, Kunihiko (1953), "On a differential-geometric method in the theory of analytic stacks", Proc. Natl. Acad. Sci. USA, 39 (12): 1268–1273,
    PMID 16589409
  • Lauritzen, Niels; Rao, Prabhakar (1997), "Elementary counterexamples to Kodaira vanishing in prime characteristic", Proc. Indian Acad. Sci. Math. Sci., 107, Springer Verlag: 21–25,
  • Fujino, Osamu (2009). "Introduction to the log minimal model program for log canonical pairs". ].
  • Sommese, Andrew John (1986). "On the adjunction theoretic structure of projective varieties". Complex Analysis and Algebraic Geometry. Lecture Notes in Mathematics. Vol. 1194. pp. 175–213. .