List of PSPACE-complete problems

Source: Wikipedia, the free encyclopedia.

Here are some of the more commonly known problems that are PSPACE-complete when expressed as decision problems. This list is in no way comprehensive.

Games and puzzles

Generalized versions of:

Logic

Lambda calculus

Type inhabitation problem
for simply typed lambda calculus

Automata and language theory

Circuit theory

Integer circuit evaluation[24]

Automata theory

Formal languages

Graph theory

Others

  • Finite horizon POMDPs (Partially Observable Markov Decision Processes).[50]
  • Hidden Model MDPs (hmMDPs).[51]
  • Dynamic Markov process.[22]
  • Detection of inclusion dependencies in a relational database[52]
  • Computation of any Nash equilibrium of a 2-player normal-form game, that may be obtained via the Lemke–Howson algorithm.[53]
  • The Corridor Tiling Problem: given a set of Wang tiles, a chosen tile and a width given in unary notation, is there any height such that an rectangle can be tiled such that all the border tiles are ?[54][55]

See also

Notes

  1. .
  2. .
  3. ^ Aviezri S. Fraenkel (1978). "The complexity of checkers on an N x N board - preliminary report". Proceedings of the 19th Annual Symposium on Computer Science: 55–64.
  4. ^ Erik D. Demaine (2009). The complexity of the Dyson Telescope Puzzle. Vol. Games of No Chance 3.
  5. ^ a b Robert A. Hearn (2008). "Amazons, Konane, and Cross Purposes are PSPACE-complete". Games of No Chance 3.
  6. S2CID 29498352
    .
  7. ^ Go ladders are PSPACE-complete Archived 2007-09-30 at the Wayback Machine
  8. S2CID 21455572
    .
  9. ^ Stefan Reisch (1981). "Hex ist PSPACE-vollständig (Hex is PSPACE-complete)". Acta Informatica (15): 167–191.
  10. .
  11. ^ a b c d Erik D. Demaine; Robert A. Hearn (2009). Playing Games with Algorithms: Algorithmic Combinatorial Game Theory. Vol. Games of No Chance 3.
  12. S2CID 13129445
    .
  13. .
  14. ^ .
  15. ^ A. Condon, J. Feigenbaum, C. Lund, and P. Shor, Random debaters and the hardness of approximating stochastic functions, SIAM Journal on Computing 26:2 (1997) 369-400.
  16. ^ Lampis, Michael; Mitsou, Valia; Sołtys, Karolina (2015). "Scrabble is PSPACE-complete". Journal of Information Processing.
  17. ^ Demaine, Erik D.; Viglietta, Giovanni; Williams, Aaron (June 2016). "Super Mario Bros. Is Harder/Easier than We Thought" (PDF). 8th International Conference of Fun with Algorithms.
    Lay summary: Sabry, Neamat (April 28, 2020). "Super Mario Bros is Harder/Easier Than We Thought". Medium.
  18. ^ Gilbert, Lengauer, and R. E. Tarjan: The Pebbling Problem is Complete in Polynomial Space. SIAM Journal on Computing, Volume 9, Issue 3, 1980, pages 513-524.
  19. ^ Philipp Hertel and Toniann Pitassi: Black-White Pebbling is PSPACE-Complete Archived 2011-06-08 at the Wayback Machine
  20. ^ a b Takumi Kasai, Akeo Adachi, and Shigeki Iwata: Classes of Pebble Games and Complete Problems, SIAM Journal on Computing, Volume 8, 1979, pages 574-586.
  21. ^
  22. ^ .
  23. .
  24. ^ Integer circuit evaluation
  25. ^ Garey & Johnson (1979), AL3.
  26. ^ Garey & Johnson (1979), AL4.
  27. ^ Garey & Johnson (1979), AL2.
  28. ^ Galil, Z. Hierarchies of Complete Problems. In Acta Informatica 6 (1976), 77-88.
  29. ^ Garey & Johnson (1979), AL1.
  30. ^ L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time. In Proceedings of the 5th Symposium on Theory of Computing, pages 1–9, 1973.
  31. ^ J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Computation, first edition, 1979.
  32. ^ a b D. Kozen. Lower bounds for natural proof systems. In Proc. 18th Symp. on the Foundations of Computer Science, pages 254–266, 1977.
  33. ^ Langton's Ant problem Archived 2007-09-27 at the Wayback Machine, "Generalized symmetrical Langton's ant problem is PSPACE-complete" by YAMAGUCHI EIJI and TSUKIJI TATSUIE in IEIC Technical Report (Institute of Electronics, Information and Communication Engineers)
  34. ^ T. Jiang and B. Ravikumar. Minimal NFA problems are hard. SIAM Journal on Computing, 22(6):1117–1141, December 1993.
  35. ^ S.-Y. Kuroda, "Classes of languages and linear-bounded automata", Information and Control, 7(2): 207–223, June 1964.
  36. ^ Bernátsky, László. "Regular Expression star-freeness is PSPACE-Complete" (PDF). Retrieved 2021-01-13.
  37. ^ Garey & Johnson (1979), AL12.
  38. ^ Garey & Johnson (1979), AL13.
  39. ^ Garey & Johnson (1979), AL14.
  40. ^ Garey & Johnson (1979), AL16.
  41. ^ Garey & Johnson (1979), AL19.
  42. ^ Garey & Johnson (1979), AL21.
  43. ^ Antonio Lozano and Jose L. Balcazar. The complexity of graph problems for succinctly represented graphs. In Manfred Nagl, editor, Graph-Theoretic Concepts in Computer Science, 15th International Workshop, WG'89, number 411 in Lecture Notes in Computer Science, pages 277–286. Springer-Verlag, 1990.
  44. ^ J. Feigenbaum and S. Kannan and M. Y. Vardi and M. Viswanathan, Complexity of Problems on Graphs Represented as OBDDs, Chicago Journal of Theoretical Computer Science, vol 5, no 5, 1999.
  45. Springer-Verlag
    . pp. 610–620.
  46. ^ Alex Fabrikant and Christos Papadimitriou. The complexity of game dynamics: BGP oscillations, sink equlibria, and beyond Archived 2008-09-05 at the Wayback Machine. In SODA 2008.
  47. ^ Erik D. Demaine and Robert A. Hearn (June 23–26, 2008). Constraint Logic: A Uniform Framework for Modeling Computation as Games. Vol. Proceedings of the 23rd Annual IEEE Conference on Computational Complexity (Complexity 2008). College Park, Maryland. pp. 149–162.{{cite book}}: CS1 maint: location missing publisher (link)
  48. S2CID 218777459
    .
  49. .
  50. .
  51. ^ I. Chades; J. Carwardine; T.G. Martin; S. Nicol; R. Sabbadin; O. Buffet (2012). MOMDPs: A Solution for Modelling Adaptive Management Problems. AAAI'12.
  52. .
  53. IEEE
    . pp. 67–76.
  54. ^ Maarten Marx (2007). "Complexity of Modal Logic". In Patrick Blackburn; Johan F.A.K. van Benthem; Frank Wolter (eds.). Handbook of Modal Logic. Elsevier. p. 170.
  55. ^ Lewis, Harry R. (1978). Complexity of solvable cases of the decision problem for the predicate calculus. 19th Annual Symposium on Foundations of Computer Science. IEEE. pp. 35–47.

References