List of planar symmetry groups
Appearance
This article summarizes the classes of discrete symmetry groups of the Euclidean plane. The symmetry groups are named here by three naming schemes: International notation, orbifold notation, and Coxeter notation. There are three kinds of symmetry groups of the plane:
- 2 families of rosette groups – 2D point groups
- 7 frieze groups – 2D line groups
- 17 wallpaper groups – 2D space groups.
Rosette groups
There are two families of discrete two-dimensional point groups, and they are specified with parameter n, which is the order of the group of the rotations in the group.
Family | Intl (orbifold) |
Schön. | Geo [1] Coxeter |
Order | Examples | |||||
---|---|---|---|---|---|---|---|---|---|---|
Cyclic symmetry | n (n•) |
Cn | n [n]+ ![]() ![]() ![]() |
n | ![]() C1, [ ]+ (•) |
![]() C2, [2]+ (2•) |
![]() C3, [3]+ (3•) |
![]() C4, [4]+ (4•) |
![]() C5, [5]+ (5•) |
![]() C6, [6]+ (6•) |
Dihedral symmetry
|
nm (*n•) |
Dn | n [n] ![]() ![]() ![]() |
2n | ![]() D1, [ ] (*•) |
![]() D2, [2] (*2•) |
![]() D3, [3] (*3•) |
![]() D4, [4] (*4•) |
![]() D5, [5] (*5•) |
![]() D6, [6] (*6•) |
Frieze groups
The 7
Schönflies notation
is given as infinite limits of 7 dihedral groups. The yellow regions represent the infinite fundamental domain in each.
|
|
Wallpaper groups
The 17
square
, oblique (parallelogrammatic), hexagonal (equilateral triangular), rectangular (centered rhombic), and rhombic (centered rectangular).
The p1 and p2 groups, with no reflectional symmetry, are repeated in all classes. The related pure reflectional Coxeter group are given with all classes except oblique.
|
|
|
|
Wallpaper subgroup relationships
o | 2222 | ×× | ** | *× | 22× | 22* | *2222 | 2*22 | 442 | 4*2 | *442 | 333 | *333 | 3*3 | 632 | *632 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p1 | p2 | pg | pm | cm | pgg | pmg | pmm | cmm | p4 | p4g | p4m | p3 | p3m1 | p31m | p6 | p6m | ||
o | p1 | 2 | ||||||||||||||||
2222 | p2 | 2 | 2 | 2 | ||||||||||||||
×× | pg | 2 | 2 | |||||||||||||||
** | pm | 2 | 2 | 2 | 2 | |||||||||||||
*× | cm | 2 | 2 | 2 | 3 | |||||||||||||
22× | pgg | 4 | 2 | 2 | 3 | |||||||||||||
22* | pmg | 4 | 2 | 2 | 2 | 4 | 2 | 3 | ||||||||||
*2222 | pmm | 4 | 2 | 4 | 2 | 4 | 4 | 2 | 2 | 2 | ||||||||
2*22 | cmm | 4 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | ||||||||
442 | p4 | 4 | 2 | 2 | ||||||||||||||
4*2 | p4g | 8 | 4 | 4 | 8 | 4 | 2 | 4 | 4 | 2 | 2 | 9 | ||||||
*442 | p4m | 8 | 4 | 8 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | |||||
333 | p3 | 3 | 3 | |||||||||||||||
*333 | p3m1 | 6 | 6 | 6 | 3 | 2 | 4 | 3 | ||||||||||
3*3 | p31m | 6 | 6 | 6 | 3 | 2 | 3 | 4 | ||||||||||
632 | p6 | 6 | 3 | 2 | 4 | |||||||||||||
*632 | p6m | 12 | 6 | 12 | 12 | 6 | 6 | 6 | 6 | 3 | 4 | 2 | 2 | 2 | 3 |
See also
- List of spherical symmetry groups
- Orbifold notation#Hyperbolic plane - Hyperbolic symmetry groups
Notes
- ^ The Crystallographic Space groups in Geometric algebra, D. Hestenes and J. Holt, Journal of Mathematical Physics. 48, 023514 (2007) (22 pages) PDF [1]
- ^ Coxeter, (1980), The 17 plane groups, Table 4
References
- The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, ISBN 978-1-56881-220-5(Orbifold notation for polyhedra, Euclidean and hyperbolic tilings)
- On Quaternions and Octonions, 2003, John Horton Conway and Derek A. Smith ISBN 978-1-56881-134-5
- Kaleidoscopes: Selected Writings of ISBN 978-0-471-01003-6 [2]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559–591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
- Coxeter, H. S. M. & Moser, W. O. J. (1980). Generators and Relations for Discrete Groups. New York: Springer-Verlag. ISBN 0-387-09212-9.
- ISBN 978-1-107-10340-5Chapter 12: Euclidean Symmetry Groups
External links
- "Conway's manuscript" on Orbifold notation (Notation changed from this original, x is now used in place of open-dot, and o is used in place of the closed dot)
- The 17 Wallpaper Groups