Lithium hybrid organic battery
Lithium hybrid organic batteries are an energy storage device that combines
PAni/V2O5



Polyaniline is easily produced to have controlled structural and electronic properties.[6] Polyaniline eliminates the coordinated water of the V2O5 xerogel, so more lithium ions can be integrated into the structure. The organic part of the PAni/V2O5 hybrid degrades with the increase of temperature.[7]
V(V) is reduced to V(IV), and
As a result, PAni/V2O5 hybrid is a conducting network and an electroactive material in the composites, which improves electrochemical behavior. It also prevents the irreversible structural changes made by redox cycling when the lithium ions enter the lattice. Moreover, this hybrid also has a high specific capacity and improved cyclability without capacity deterioration.
PTMA/LiFePO4

The cell was prepared by using a working electrode to assemble a half-cell configuration dry
After testing, pure PTMA and LiFePO4 electrode give a sharp redox peak and decrease the voltage gap between oxidation and reduction.[13] Therefore, PTMA and LiFePO4 improve the rate and reversibility of the redox couples. Furthermore, the hybrid cathodes have a lower charge-transfer resistance, allowing easier migration of Li ions through the electrode interface. Moreover, PTMA/LiFePO4 has a longer life cycle compared to pure LiFePO4 or PTMA systems.
References
- ^ Ng, S. H., Chew, S. Y., Wang, J., Wexler, D., Tournayre, Y., Konstantinov, K., & Liu, H. K. (2007). Synthesis and electrochemical properties of V 2 O 5 nanostructures prepared via a precipitation process for lithium-ion battery cathodes. Journal of Power Sources, 174(2), 1032-1035.
- ^ Liu, D., Liu, Y., Garcia, B. B., Zhang, Q., Pan, A., Jeong, Y. H., & Cao, G. (2009). V2O5 xerogel electrodes with much enhanced lithium-ion intercalation properties with N 2 annealing. Journal of Materials Chemistry, 19(46), 8789-8795. doi:10.1039/b914436f.
- ^ Chao, D., Xia, X., Liu, J., Fan, Z., Ng, C. F., Lin, J., ... & Fan, H. J. (2014). A V2O5/Conductive‐Polymer Core/Shell Nanobelt Array on Three‐Dimensional Graphite Foam: A High‐Rate, Ultrastable, and Freestanding Cathode for Lithium‐Ion Batteries. Advanced Materials, 26(33), 5794-5800. doi:10.1002/adma.201400719.
- ^ Swider-Lyons, K. E., Love, C. T., & Rolison, D. R. (2002). Improved lithium capacity of defective V2O5 materials. Solid State Ionics, 152, 99-104. doi:10.1016/S0167-2738(02)00350-8.
- ^ Li, G., Lu, Z., Huang, B., Huang, H., Xue, R., & Chen, L. (1995). An evaluation of lithium intercalation capacity into carbon by XRD parameters. Solid state ionics, 81(1), 15-18. doi:10.1016/0167-2738(95)00166-4.
- ^ Molapo, K. M., Ndangili, P. M., Ajayi, R. F., Mbambisa, G., Mailu, S. M., Njomo, N., ... & Iwuoha, E. I. (2012). Electronics of conjugated polymers (I): polyaniline.International Journal of Electrochemical Science, 7(12).
- ^ Lira-Cantu, M., Gomez-Romero, P. (1999), The Organic-Inorganic Polyaniline/V2O5 System: Application as a High Capacity Hybrid Cathode for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 146(6): 2029-2033. doi:10.1149/1.1391886.
- ^ Lira-Cantu, M., Gomez-Romero, P. (1999), The Organic-Inorganic Polyaniline/V2O5 System: Application as a High Capacity Hybrid Cathode for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 146(6): 2029-2033. doi:10.1149/1.1391886.
- ^ Park, K., Song, H., Kim, Y., Mho, S., Cho, W., and Yeo. I. (2009), Electrochemical Preparation and Characterization of V2O5 / Polyaniline composite Film Cathodes for Li Battery. Electrochimica Acta: Emerging Trends and Challenges in Electrochemistry, 55(27): 8023-8029. doi:10.1016/j.electacta.2009.12.047.
- ^ Guo, W., Yin, Y., Xin, S., Guo Y., and Wan, L. (2011), Superior Radical Polymer Cathode Material with a Two-electron Process Redox Reaction Promoted by Graphene. Energy and Environmental Science, 5(1): 5221-5225. doi: 10.1039/c1ee02148f.
- ^ Huang, Q., Cosimbescu, L., Koech, P., Choi, D., and Lemmon, J. (2013), Composite Organic Radical-Inorganic Hybrid Cathode for Lithium-Ion Batteries. Journal of Power Sources, 233(3): 69-73. doi:10.1016/j.jpowsour.2013.01.076.
- ^ Huang, Q., Cosimbescu, L., Koech, P., Choi, D., and Lemmon, J. (2013), Composite Organic Radical-Inorganic Hybrid Cathode for Lithium-Ion Batteries. Journal of Power Sources, 233(3): 69-73. doi:10.1016/j.jpowsour.2013.01.076.
- ^ Vlad, A., Singh, N., Rolland, J., Melinte, S., Ajayan, P. M., & Gohy, J. F. (2014). Hybrid supercapacitor-battery materials for fast electrochemical charge storage.Scientific reports, 4. doi:10.1038/sren04315.