Local class field theory
In
Approaches to local class field theory
Local class field theory gives a description of the Galois group G of the maximal abelian extension of a local field K via the reciprocity map which acts from the multiplicative group K×=K\{0}. For a finite abelian extension L of K the reciprocity map induces an isomorphism of the quotient group K×/N(L×) of K× by the norm group N(L×) of the extension L× to the Galois group Gal(L/K) of the extension.[2]
The existence theorem in local class field theory establishes a one-to-one correspondence between open subgroups of finite index in the multiplicative group K× and finite abelian extensions of the field K. For a finite abelian extension L of K the corresponding open subgroup of finite index is the norm group N(L×). The reciprocity map sends higher groups of units to higher ramification subgroups.[2]Ch. 4
Using the local reciprocity map, one defines the Hilbert symbol and its generalizations. Finding explicit formulas for it is one of subdirections of the theory of local fields, it has a long and rich history, see e.g. Sergei Vostokov's review.[3]
There are cohomological approaches and non-cohomological approaches to local class field theory. Cohomological approaches tend to be non-explicit, since they use the cup product of the first Galois cohomology groups.
For various approaches to local class field theory see Ch. IV and sect. 7 Ch. IV of.
Generalizations of local class field theory
Generalizations of local class field theory to local fields with quasi-finite residue field were easy extensions of the theory, obtained by G. Whaples in the 1950s.[3]ch. V
Explicit p-class field theory for local fields with perfect and imperfect residue fields which are not finite has to deal with the new issue of norm groups of infinite index. Appropriate theories were constructed by Ivan Fesenko.[4][5]
Fesenko's noncommutative local class field theory for arithmetically profinite Galois extensions of local fields studies appropriate local reciprocity cocycle map and its properties.
Higher local class field theory
For a higher-dimensional local field there is a higher local reciprocity map which describes abelian extensions of the field in terms of open subgroups of finite index in the
Higher local class field theory is part of
over integers.References
- S2CID 116860448
- ^ ISBN 0-8218-3259-X
- ^ .
- .
- Journal für die reine und angewandte Mathematik. 473: 207–222.
- ISBN 4-931469-11-6.
Further reading
- Fesenko, Ivan; Vostokov, Sergey (2002), Local Fields and their Extensions (2nd ed.), American Mathematical Society, ISBN 978-0-19-504030-2
- Zbl 0954.00026
- Iwasawa, Kenkichi (1986), Local class field theory, Oxford Science Publications, The Clarendon Press Oxford University Press, MR 0863740
- MR 0819231
- MR 0220701
- Serre, Jean-Pierre (1979) [1962], Corps Locaux (English translation: Local Fields), Graduate Texts in Mathematics, vol. 67, Berlin, New York: MR 0150130