Mazur manifold

Source: Wikipedia, the free encyclopedia.

In

4-ball
. Usually these manifolds are further required to have a handle decomposition with a single -handle, and a single -handle; otherwise, they would simply be called contractible manifolds. The boundary of a Mazur manifold is necessarily a homology 3-sphere.

History

Barry Mazur[1] and Valentin Poenaru[2] discovered these manifolds simultaneously. Akbulut and Kirby showed that the Brieskorn homology spheres , and are boundaries of Mazur manifolds, effectively coining the term `Mazur Manifold.'[3] These results were later generalized to other contractible manifolds by Casson, Harer and Stern.[4][5][6] One of the Mazur manifolds is also an example of an Akbulut cork which can be used to construct exotic 4-manifolds.[7]

Mazur manifolds have been used by Fintushel and Stern[8] to construct exotic actions of a group of order 2 on the 4-sphere.

Mazur's discovery was surprising for several reasons:

  • Every smooth homology sphere in dimension is homeomorphic to the boundary of a compact contractible smooth manifold. This follows from the work of Kervaire
    Rochlin invariant
    provides an obstruction.
  • The h-cobordism Theorem implies that, at least in dimensions there is a unique contractible -manifold with simply-connected boundary, where uniqueness is up to diffeomorphism. This manifold is the unit ball . It's an open problem as to whether or not admits an exotic smooth structure, but by the h-cobordism theorem, such an exotic smooth structure, if it exists, must restrict to an exotic smooth structure on . Whether or not admits an exotic smooth structure is equivalent to another open problem, the smooth PoincarĂ© conjecture in dimension four. Whether or not admits an exotic smooth structure is another open problem, closely linked to the Schoenflies problem in dimension four.

Mazur's observation

Let be a Mazur manifold that is constructed as union a 2-handle. Here is a sketch of Mazur's argument that the double of such a Mazur manifold is . is a contractible 5-manifold constructed as union a 2-handle. The 2-handle can be unknotted since the attaching map is a framed knot in the 4-manifold . So union the 2-handle is diffeomorphic to . The boundary of is . But the boundary of is the double of .

References

  1. .
  2. .
  3. .
  4. .
  5. .
  6. ^ R.Stern (1978). "Some Brieskorn spheres which bound contractible manifolds". Notices Amer. Math. Soc. 25.
  7. .
  8. ^ Fintushel, Ronald; Stern, Ronald J. (1981). "An exotic free involution on ". .
  9. .